The Challenges of

TinyML Implementation

A Literature Review

Riya Adlakha and Eltahir Kabbar

https://doi.org/10.34074/proc.240120

Correspondence: Eltahir Kabbar, ekabbar@unitec.ac.nz

The Challenges of TinyML Implementation: A Literature Review by Riya Adlakha and
Eltahir Kabbar is licensed under a Creative Commons Attribution-NonCommercial 4.0

International licence.

This publication may be cited as:

Adlakha, R., & Kabbar, E. (2024). The Challenges of TinyML Implementation: A Literature
Review. In H. Sharifzadeh (Ed.), Proceedings: CITRENZ 2023 Conference, Auckland, 27-29
September (pp. 160-169). ePress, Unitec. https://doi.org/10.34074/proc.240120

Contact:

epress@unitec.ac.nz
www.unitec.ac.nz/epress/

Unitec

Private Bag 92025, Victoria Street West
Tamaki Makaurau Auckland 1142
Aotearoa New Zealand

ISBN: 978-1-99-118344-6

ePress LUJ

Research with impact Unitec

Unitec is a business division of Te Pikenga -
New Zealand Institute of Skills and Technology

clole

https://doi.org/10.34074/proc.240120

ABSTRACT

This study aims to sensitise and summarise the tiny machine learning (TinyML) implementation literature.
TinyML is a subset of machine learning (ML) that focuses on implementing ML models on resource-
constrained devices such as microcontrollers, embedded systems, and internet of things (loT) devices. A
systematic literature review is performed on the works published in this field in the last decade. The key
focus of this article is to understand the critical challenges faced by this emerging technology. We present
five significant challenges of TinyML, namely, limited and dynamic resources, heterogeneity, network
management, security and privacy, and model design. This article will be of interest to researchers and
practitioners who are interested in the fields of ML, loT and edge computing.

KEYWORDS

TinyML, edge computing, machine learning, loT, microcontrollers

BACKGROUND

With the evolution in hardware, integrating enhanced machine learning (ML) models running on low-power
embedded devices such as microcontrollers has become possible. This convergence of ML and embedded systems
is called tiny machine learning (TinyML). TinyML enables assembling ML to hardware segments without processing
the data in an external location. Processing and execution occur at the edge, making the applications close to

the data source. This concept is called edge computing. In recent times, edge computing has become a shining
example of an emerging technology. The technology has numerous applications in healthcare, finance, smart cities
and transportation. TinyML delivers promising results when deployed on small edge devices that facilitate fast
processing and data analysis without needing a server response. Figure 1 showcases an architectural framework of
TinyML to compute and analyse data from multiple IoT devices into an edge device (microcontroller unit [MCU], for
example), eliminating the requirement for processing at cloud servers.

The three basic tool-sets required to enable TinyML for processing and predicting results are hardware, software
and libraries (Janapa Reddi et al., 2022). Various hardware platforms are TinyML aware, such as Arduino Nano 33
BLE Sense, Apollo3, Nicla Sense ME, ST loT Discovery and Nordic Semi nRF52840 DK, to name a few. Most hardware
operates at a flash memory of less than 1 MB and SRAM of less than 1T MB. Most of these are battery operated

and have Li-Po on top of a DC power source. ARM Cortex M4 stands out as the most popular and widely used
microprocessor. TensorFlow Lite (TFL) and uTensor are open-source software designed to run ML on MCUs and
rapidly deploy loT devices. Edge Impulse, another software, is a cloud service that enables TinyML by running ML
models for edge devices. It supports AutoML for platforms at the edge. The capability of local execution is also
supported with Python, C++ and SDK, along with numerous platforms such as smartphones endowed with Edge
Impulse, to build training models.

Proceedings: CITRENZ 2023 Conference, Auckland, 27-29 September 161

[e e e e e e A
1 1
H H
i loT i [Machine LeamingAJ
| s |
1 1
1 p— H |
i TinyML i |
Process and analyse ! N !
data from multiple - = MCU, CNN micro i |
devices H - i |
I = | .
e I A |
1 |
v 1
Edge EdgeML !
I|\ Optimises algorithms 1
Data remains closer to the source 1
|
|
|
|

CloudML
Cloud Server DNN on the cloud

Consists of CPU, GPU and TPU

A
|
|
L

Figure 1. Enabling loT devices with cloud computing, edge computing, and TinyML.

TinyML has a range of opportunities, given that the microcontrollers consume relatively less energy than the
graphic processing units (GPUs), which enables the loT devices that work with MCUs to be placed anywhere without
plugging in (Sanchez-Iborra & Skarmeta, 2020). Given their low energy requirement, they can also be paired with
devices driven by large batteries, allowing them to emerge as connected smart devices, such as smart watches and
doorbells. In addition, MCUs are more cost effective compared to high-end processors, making the TinyML systems
cost effective. With the TinyML model running on edge, the data is stored, processed and analysed internally rather
than at an external server or cloud. These advantages increase data privacy, reducing the risk of compromising
sensitive information. With complete independence, embedded devices increase autonomy by eradicating
interference from outside sources. Thus, decisions and information can only be accessed and shared within the
system (Soro, 2021).

One recent study that informs this research is Han and Siebert (2022), who presented a systematic literature review
of TinyML focusing on five aspects: hardware, framework, datasets, use cases and algorithms. This study adds to
their work by focusing on understanding the challenges associated with TinyML implementation in detail. We also
explore the history, benefits and implementation of TinyML in the following sections.

HISTORY OF TINYML

TinyML emerged from the internet of things (loT). It is a game changer, emphasising that big is not always better.
Traditional methods included putting complex ML models into hardware for developing applications and products.
The computing was performed on the cloud, which introduced the hurdle of latency and depended entirely on
connectivity. All these factors made computing not only slower but also expensive and inefficient. The development
of TinyML by Pete Warden bridged the gap between intelligence and embedded systems. More and more
companies across the globe are moving towards TinyML. Azip, a leading company in AloT (artificial intelligence for
IoT) (“Artificial intelligence of things,” 2023), is making TinyML models available for high-performance and intelligent
product solutions.

Proceedings: CITRENZ 2023 Conference, Auckland, 27-29 September 162

KEY ENABLER: TINYML AS-A-SERVICE

Conventional ML processing is powered by cloud providers that run on efficient CPUs, GPUs and tensor processing
units (TPUs). However, embedded systems face constraints because of these devices’ limited computation

and processing powers to run complex ML models. TinyML as-a-Service (TinyMLaa$) is modelled to solve this
fundamental problem for compact devices. Using an ML compiler, it aims to transform such models to fit the target
device's resource size. It uses techniques to squeeze the model size; for example, quantising with fewer computing
bits, pruning less critical parameters, and fusing multiple computational operators into one (Doyu et al., 2020). The
framework uses ML compilers to generate optimised low runtime for popular ML models. TinyMLaaS also includes
specialised ML models for embedded hardware accelerators, which are chip-manufacturer dependent.

In a typical TinyMLaa$S ecosystem, an appropriate ML model is generated using lightweight machine-to-machine
(LwM2M) software with an ‘on-the-fly" model inferencing module. TinyMLaaS$ is a demand-driven cloud service that
resolves privacy issues by keeping the data on-premise.

RESEARCH METHODS

To identify the critical challenges of TinyML implementation, a detailed literature review, guided by Brereton et al.
(2007), was conducted using relevant keywords. The researchers then identified the articles that discussed TinyML
implementation, eliminating any study out of the scope. Once the final list was devised, the researchers analysed
and categorised the literature into five themes. The taxonomy of the literature categorisation is discussed in the
following section.

RESULTS AND DISCUSSION

This section outlines the five key challenges and problems encountered in research and deployment pertaining to
the numerous TinyML applications: limited and dynamic resources, heterogeneity, network management, security
and privacy, and model design. We review the five main challenges and propose solutions in the following section.
Figure 3 illustrates the taxonomy of obstacles TinyML faces.

Limited and Dynamic Resources

TinyML devices often have constrained energy, memory, and computing capabilities. These constraints present a
barrier when deploying sophisticated machine-learning models that demand a lot of computational power.

Limited power: Maintaining accuracy throughout the range of TinyML devices is challenging because their power
consumption can vary greatly. As articulated by R. Kallimani et al. (2023), the performance of the algorithms is
severely hampered by the lack of power at the edge devices. Secondly, establishing what comes inside the scope
of the power measurement is problematic when data pathways and preprocessing procedures differ dramatically
between devices. TinyML frameworks may encounter energy mismanagement because sensors and other
accessories are frequently attached to edge devices (Yelchuri & R, 2022). As a result, developing a power-efficient
TinyML system remains a significant challenge.

Proceedings: CITRENZ 2023 Conference, Auckland, 27-29 September 163

TinyML
." loT Challenges ML

Network
Management

{ Limited and dynamic 1

Model Design
resources

Compression
Security and =

Heterogen@) —

—

Dynamic
Allocation

Unified
Programming
Model

(e }— e

Figure 3: Taxonomy of TinyML challenges.

Limited memory: Due to the resource-constrained nature of tiny devices, one of the primary issues with TinyML
is limited memory. Inference models used in traditional ML benchmarks have significantly greater peak memory
requirements (in the range of GBs) than TinyML devices can offer (Banbury et al., 2020). Common ML systems
frequently don’t have resource use restrictions while running on workstations or the cloud. As a subset of edge
devices, frugal gadgets, however, are much more limited. Most MCUs come with memory measured in kilobytes
rather than megabytes and processors that run at megahertz rather than gigahertz in the most recent mobile
phones. The restricted memory on TinyML devices leads to two key issues:

Catastrophic forgetting: One common implication of limited memory in TinyML is catastrophic
forgetting. This is a phenomenon in which the model forgets previously learned information while
continuing to learn new information. Catastrophic forgetting can be a significant worry in the setting of
TinyML, because memory and computing resources are constrained (Rajapakse et al., 2023). TinyML models
are frequently used on hardware with limited memory, making it challenging to retain vast amounts of
data for the model’s retraining on earlier jobs.

Volatility of SRAM: Due to resource limits, MCUs' primary memory (SRAM) spans from a few to a few
hundred kilobytes. Neural networks stored in a flash as a C/C++ array are handled as frozen graphs, which
means that any amendments to this graph are not permitted. As a result, many systems train the existing
model entirely or partially in SRAM without putting it in flash memory. Because SRAM is volatile, any
progress in training a model is lost when the MCU is reset or powered off.

Dynamic resource allocation: TinyML's dynamic resource allocation is a significant challenge, especially when
dealing with resource-constrained devices with low memory, processing power and energy. Dynamic resource
allocation entails efficiently managing and distributing the ever-dynamic resources to various TinyML system

Proceedings: CITRENZ 2023 Conference, Auckland, 27-29 September 164

activities or components. Currently, the edge platform suffers from a problem with dynamic resource allocation,
necessitating the development of techniques/algorithms for analysing dynamic data. New methods that consider
the varying computational power and specifications of processing entities, as well as the requirement for consistent
portability among heterogeneous devices in the event of local and parallel processing, are required (Doyu et al.,
2021).

Heterogeneity

Due to the considerable variation of hardware, software, and data characteristics across different tiny devices and
platforms, heterogeneity can appear in various ways in TinyML. The models must be compatible with the target
device's hardware, software and data architectures. It can be challenging to ensure compatibility across multiple
microcontrollers and embedded systems, because each platform may have its limits and optimisations. Below are
the three significant types of heterogeneity observed in TinyML models.

Hardware heterogeneity: TinyML models are implemented on various hardware architectures, from
microcontrollers to embedded systems and loT devices. These devices may feature different processor types

(for example, ARM or RISC-V), clock speeds, memory sizes and specialised hardware accelerators. Each hardware
platform may have its own set of constraints and optimisations, making it challenging to create models that
perform well across many devices. Furthermore, a significant challenge is the issue of standardising performance
findings across different implementations (Banbury et al., 2020).

Software heterogeneity: TinyML's software heterogeneity refers to the variety of software components,
frameworks, libraries and runtime environments utilised for deploying ML models on resource-limited devices.

This variation is caused by changes in operating systems, ML frameworks and other software dependencies among
small devices. The constraints of software heterogeneity include maintaining TinyML application consistency and
performance, compatibility issues and program capability restrictions. Tiny devices frequently use several operating
systems or RTOS, each with its own memory management and language support, which influences application
behaviour. Furthermore, the availability and compatibility of ML frameworks may differ, resulting in model
development and deployment inconsistencies. Software libraries, inference engines and compiler variations further
complicate TinyML development and deployment.

Data heterogeneity: Handling data heterogeneity is difficult, because it requires careful consideration of data
pretreatment, augmentation, and adaption approaches to maintain model resilience and generalisation. TinyML
models are trained using data from various sources, such as sensors or edge devices, resulting in multiple data
types and formats. Model accuracy depends on managing data quality and dealing with noisy or missing data
(Kallimani et al., 2023). Variations in data distribution between devices can also impact model performance during
deployment. TinyML application portability (Lakshman & Eisty, 2022) is affected by data heterogeneity, because
models must be flexible to multiple data distributions, necessitating preprocessing, transfer learning, and robust
generalisation techniques to maintain consistent performance across different devices and contexts.

Network Management

Network management is essential for dependable and effective communication among resource-constrained
devices, edge nodes and cloud servers. Three challenges related to maintaining a consistent network for TinyML are
discussed in this section.

Connectivity: Gateways in the architecture must be connected to the internet. Provisioning such connectivity
necessitates both capital expenditure (CAPEX) and operating expenditure (OPEX), as well as administrative
overheads associated with infrastructure maintenance (Zaidi et al., 2022). Local inference capabilities lessen reliance
on connectivity, allowing for providing services in places where internet connectivity is sporadic or non-existent.
Managing the network connectivity of small devices is critical for data transmission, model updates and contact

Proceedings: CITRENZ 2023 Conference, Auckland, 27-29 September 165

with cloud services. Tiny devices may have different communication capabilities, such as wi-fi, Bluetooth, Zigbee or
cellular connectivity, each with limitations and trade-offs.

Latency: Real-time inference is critical for many applications, including robotics and voice-based assistive
technology. For example, real-time inference is essential in responding to user commands and operating in a voice-
controlled home automation system.

Sending data to the cloud for inference or training may result in network delays, rendering it unsuitable for time-
sensitive, interactive applications. For example, offloading sensor data to a cloud server for processing in a real-
time robotics application would result in considerable end-to-end latency (Chen & Ran, 2019). Applications with
low-latency requirements can accomplish real-time inference and provide smooth user experiences by leveraging
TinyML and edge computing, which makes them particularly successful in dynamic and time-critical contexts.

Application optimisation: Because of the nature of the computing platforms, applications deployed in edge-cloud
computing settings confront a slew of challenges, including restricted bandwidth, unreliability and heterogeneity
of wireless connections, and computation offloading. Changing workloads across different components has an
impact on application performance. Maintaining quality of service necessitates elasticity and remedial skills. Thang
Le Duc et al. have discussed techniques such as load balancing, application scaling and migration to achieve these
needs for reliable resource supply in edge-cloud computing (Le Duc et al., 2019).

Security and Privacy

The leakage of private information, such as data, location, or usage, is a crucial challenge for end users using
services such as cloud computing, wireless network, or IoT. In addition to encryption of private data, secure proxies
required for rendezvous, communication and access control are currently not popular in TinyML implementation.
Yi et al. (2015) have extensively presented the challenges of security and privacy problems related to TinyML
implementation. This section discusses these challenges.

Security: As discussed in the work presented by Lopez et al. (2015), the coexistence of malicious and trusted
nodes in distributed edge-based overlays is considered by edge-centric computing. This will necessitate using
secure routing, redundant routing, trust topologies and past peer-to-peer research on this novel set. Below are the
problems faced in obtaining a secure TinyML framework (Yi et al., 2015):

Rogue fog node: A rogue fog node is a fog device or instance that lures end users into connecting by
pretending to be genuine. This can lead to the threat of cyber-attacks, as the system’s security will be
compromised if connected to a fake node. Due to the dynamic instance creation and deletion in TinyML, it
is difficult to block or blacklist the false nodes, making them prone to such attacks.

Authentication: Authentication is a prime focus for TinyML, as many end users are connected to its
devices and applications. Each node requires authentication, which poses a challenge to TinyML. In
contrast to the conventional public key infrastructure authentication, face, fingerprint and touch-based
authentication would be beneficial to transform the security standards used in TinyML.

Secure data storage: Edge computing involves outsourcing user data and transferring user control over
data to the edge, which has the same security risks as cloud computing. It is challenging to guarantee
data integrity, because the outsourced data may be deleted or erroneously manipulated. Furthermore,
unauthorised parties might exploit the uploaded data to threaten the TinyML systems.

Privacy: Data transmission to the cloud raises privacy issues for users who own that data or whose actions are being
traced in the data. This leads to the mental barrier of exposing sensitive and confidential information to the cloud
without learning how the data will be consumed. Data, usage and location privacy are often the most challenging
aspects of TinyML. Edge nodes fetch sensitive information produced by loT devices and usually lack privacy-
preserving methods. These methods cannot be deployed directly because edge computing has no reliable third
party. Access control has been shown to be a reliable solution for maintaining user privacy while ensuring system

Proceedings: CITRENZ 2023 Conference, Auckland, 27-29 September 166

security. While access control in cloud computing is typically performed cryptographically for outsourced data,
building access control that spans client, edge and cloud in fog computing will be challenging while continuously
meeting the design and resource limitations.

Model Design

Machine learning researchers frequently concentrate on developing models with a smaller number of parameters in
the deep neural network (DNN) model in order to lower memory usage and latency while achieving good accuracy
when designing DNN models for resource-constrained devices. Major challenges that arise in the implementation of
TinyML are model compression, model splitting and a unified programming model.

Model compression: To enable running ML models such as DNNs on the edge, model compression is crucial to
compress the existing models while preserving high accuracy at the same time. Compression techniques such as
parameter quantisation and pruning are useful in doing so (Chen & Ran, 2019). By changing the precision of DNN
parameters from floating-point numbers to low-bit numbers, parameter quantisation reduces the computational
load by avoiding costly floating-point multiplications. Parameter pruning, on the other hand, reduces the size
and efficiency of the DNN model while maintaining acceptable performance by removing the least significant
parameters, which are frequently the ones close to zero.

Model splitting: A DNN model can be processed using the model splitting technique across many computer
devices or resources. This method is very helpful in context with limited resources, such as edge devices and
microcontrollers. The method entails breaking up the initial DNN into more manageable sub-models or layers.
These sub-models can then be installed and run on distinct edge devices with constrained memory and processing
power. The goal of model splitting is to maximise inference efficiency and resource utilisation without adversely
affecting the performance of the model as a whole.

Unified programming model: TinyML's unified programming model addresses the heterogeneity by offering a
consistent and standardised framework for constructing machine learning models that can operate quickly on a
diverse variety of edge devices. Automatic model optimisation and quantisation techniques are used to reduce
huge models into compact forms suitable for edge devices. This approach emphasises low-latency and real-time
inference, ensuring that TinyML models can accomplish tasks with little delay, making them suited for robotics, loT,
and other real-time use cases. TinyML intends to lower the barrier of entry for developers, speed the creation of
TinyML applications, and encourage the use of machine learning in resource-constrained situations by providing a
consistent programming model.

CONCLUSION

TinyML can transform multiple technologies such as cloud computing, loT and ML. The open challenges identified
in this study make TinyML unfeasible for some industries, such as finance and healthcare, due to the high demand
for security and privacy. The results of our study indicate that limited resources, security and privacy are the most
significant difficulties TinyML implementation faces. While the heterogeneity of hardware, software and data stands
out as a challenge, there is a huge potential for this technology to shape the future of machine learning.

Proceedings: CITRENZ 2023 Conference, Auckland, 27-29 September 167

REFERENCES

Artificial intelligence of things. (2023, September 18). In Wikipedia. https://en.wikipedia.org/wiki/Artificial _
intelligence_of_things

Banbury, C. R., Reddi, V. J., Lam, M., Fu, W,, Fazel, A., Holleman, J., Huang, X., Hurtado, R., Kanter, D.,
Lokhmotov, A., Patterson, D., Pau, D., Seo, J., Sieracki, J., Thakker, U., Verhelst, M., & Yadav, P.
(2020). Benchmarking TinyML systems: Challenges and direction. http://arxiv.org/abs/2003.04821

Brereton, P, Kitchenham, B. A., Budgen, D., Turner, M., & Khalil, M. (2007). Lessons from applying the
systematic literature review process within the software engineering domain. Journal of Systems
and Software, 80(4), 571-583. https://doi.org/10.1016/j.js5.2006.07.009

Chen, J,, & Ran, X. (2019). Deep learning with edge computing: A review. Proceedings of the IEEE, 107(8).
https://doi.org/10.1109/JPROC.2019.2921977

Doyu, H., Morabito, R., & Brachmann, M. (2021). A TinyMLaa$S ecosystem for machine learning in IoT:
Overview and research challenges. 2021 International Symposium on VLS| Design, Automation
and Test (VLSI-DAT). https://doi.org/10.1109/VLSI-DAT52063.2021.9427352

Doyu, H., Morabito, R., & Héller, J. (2020). Bringing machine learning to the deepest loT edge with TinyML as-
a-Service*. https://www.researchgate.net/publication/342916900

Han, H., & Siebert, J. (2022). TinyML: A systematic review and synthesis of existing research. 4th
International Conference on Artificial Intelligence in Information and Communication (ICAIIC), 269—
274. https://doi.org/10.1109/ICAIIC54071.2022.9722636

Janapa Reddi, V., Plancher, B., Kennedy, S., Moroney, L., Warden, P., Suzuki, L., Agarwal, A., Banbury, C,,
Banzi, M., Bennett, M., Brown, B., Chitlangia, S., Ghosal, R., Grafman, S., Jaeger, R., Krishnan, S.,
Lam, M., Leiker, D., Mann, C., ... Tingley, D. (2022). Widening access to applied machine learning
with TinyML. Harvard Data Science Review, 4(1). https://doi.org/10.1162/99608f92.762d171a

Kallimani, R., Pai, K., Raghuwanshi, P, lyer, S., & Lopez, O. (2023). TinyML: Tools, applications, challenges,
and future research directions. arXiv. https://doi.org/10.48550/ARXIV.2303.13569

Lakshman, S. B., & Eisty, N. U. (2022). Software engineering approaches for TinyML based loT embedded
vision: A systematic literature review. 4th International Workshop on Software Engineering
Research and Practice for the loT (SERP4IoT '22), 33-40. https://doi.org/10.1145/3528227.3528569

Le Duc, T, Leiva, R. G., Casari, P, & Ostberg, P. 0. (2019). Machine learning methods for reliable resource
provisioning in edge-cloud computing. ACM Computing Surveys (CSUR), 52(5). https://doi.
org/10.1145/3341145

Lopez, P. G., Montresor, A., Epema, D. H., Datta, A., Higashino, T., lamnitchi, A., Barcellos, M., Felber, P., &
Riviere, E. (2015). Edge-centric computing: Vision and challenges. Computer Communication
Review (CCR), 45(5), 37-42. https://iris.unitn.it/retrieve/handle/11572/114780/429278/ccr15.pdf

Rajapakse, V., Karunanayake, I., & Ahmed, M. (2023). Intelligence at the extreme edge: A survey on
reformable TinyML. ACM Computing Surveys, 55(13s), 1-30. https://doi.org/10.1145/3583683

Sanchez-lborra, R., & Skarmeta, A. F. (2020). TinyML-enabled frugal smart objects: Challenges and
opportunities. IEEE Circuits and Systems Magazine, 20(3), 4-18. https://doi.org/10.1109/
MCAS.2020.3005467

Soro, S. (2021). TinyML for ubiquitous edge Al. arXiv. https://doi.org/10.48550/arXiv.2102.01255

Yelchuri, H., & R, R. (2022). A review of TinyML. arXiv. https://doi.org/10.48550/arXiv.2211.04448

Yi, S., Qin, Z., & Li, Q. (2015). Security and privacy issues of fog computing: A survey. Lecture Notes in
Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 9204, 685-695. https://doi.org/10.1007/978-3-319-21837-3_67

Zaidi, S. A. R., Hayajneh, A. M., Hafeez, M., & Ahmed, Q. Z. (2022). Unlocking edge intelligence through
tiny machine learning (TinyML). IEEE Access, 10, 100867-100877. https://doi.org/10.1109/
ACCESS.2022.3207200

Proceedings: CITRENZ 2023 Conference, Auckland, 27-29 September

168

https://en.wikipedia.org/wiki/Artificial_intelligence_of_things
https://en.wikipedia.org/wiki/Artificial_intelligence_of_things
https://doi.org/10.1016/j.jss.2006.07.009
https://doi.org/10.1145/3341145
https://doi.org/10.1145/3341145
https://doi.org/10.1109/MCAS.2020.3005467
https://doi.org/10.1109/MCAS.2020.3005467
https://doi.org/10.1109/ACCESS.2022.3207200
https://doi.org/10.1109/ACCESS.2022.3207200

AUTHORS

Riya Adlakha is an aspiring researcher currently pursuing a Postgraduate Diploma in Applied
Technology at Unitec, with a keen interest in diverse fields such as machine learning, data
sciences, data and business analytics, and loT. Her career as a Business Analyst at Amazon, India,
served as the starting point for her foray into data-driven storytelling. Riya’s work is an invitation
to other enthusiasts to join them in their pursuit of knowledge and discovery. She is passionate
about examining the transforming potential of research and is dedicated to making the difficult
understandable, and works to close the knowledge gap in all of her endeavours.
riya.work0O4@gmail.com

Dr Eltahir Kabbar is a Senior Lecturer at the School of Computing Electrical and Applied
Technology, Unitec. His research interests include diffusion of innovation (DOI), technology
adoption, and e-government systems. His publications include a book chapter, journal articles
and international conferences. ekabbar@unitec.ac.nz

Proceedings: CITRENZ 2023 Conference, Auckland, 27-29 September

169

mailto:riya.work04@gmail.com

