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ABSTRACT

The Python language has no unrestricted goto statement, but because of Python’s deep introspection 
capabilities, along with its dynamic nature, an unrestricted goto can be added to the language by rewriting 
a function’s bytecode at runtime. Two primary use cases for goto in Python are discussed: porting existing 
historic code to Python while maintaining the existing code’s flavour, and implementing state machines. 
While theoretically unnecessary, goto can make the first case easier, and the second case faster. An 
implementation is described and performance tests on an example state machine show using goto is a 
very fast method of implementing state machines in Python, and existing efforts to port historic code are 
already using the goto implementation.
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INTRODUCTION

Dijkstra’s well-known 1968 letter “Go To Considered Harmful” (Dijkstra, 1968, p. 147) popularised the problems 
that can be caused by careless use of the unrestricted jump that goto provides. The core of Dijkstra’s complaint is 
that “unbridled use of the go to statement” makes reasoning about the behaviour of a running program difficult 
when presented with the static program code. In the programmer’s struggle to constrain complexity, the goto 
statement provides far more opportunities for increasing complexity than it does to reduce it. Knuth (1974) brought 
some balance to Dijkstra’s opinion and found that even with the significant then-recent advance of structured 
programming in academia, there were both cases where goto should be eliminated, and cases where goto was 
justified or even preferred. It was about two decades later that mainstream programming languages emerged (such 
as Java, Python, and then later JavaScript) with no native goto statement available. These languages instead have 
two restricted forms of the goto statement: break and continue. These restricted jump instructions cover many of 
the use cases where goto was used traditionally, but without the same potential for spaghettification of code.

While break and continue cover the majority of ‘sensible’ use cases for the goto statement, there are two main 
areas where goto still proves to be a useful construct for control flow: (1) porting existing software that uses goto 
statements; and (2) complex state machines.

Ceccato et al. (2008) compare different automatic goto-elimination techniques in porting a large (8 million lines 
of code) banking system to Java from a “BASIC-like language” which (initially, at least) had very limited control 
flow statements. Out of the 8 million lines, around 500,000 were goto statements. While most goto statements 
were automatically eliminated in the generated Java code, a minority could not be translated without a significant 
decrease in the understandability of the generated code. In these cases, placeholder jlabel() and jgoto() calls 
were introduced to the code, and a post-compilation step replaced these the jgoto() calls in the java byte code 
with a JVM goto instruction to the appropriate label. This post-compilation step is essentially a ‘hack’ to add goto to 
Java; the underlying bytecode interpreter has a goto, and the post-compilation step rewrites the bytecode to allow 
direct access to it. It is similar to the approach used in this paper, though with Java a separate post-compilation step 
is required, and in Python this can be done at runtime.
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At the other end of the program size scale there is historical interest in early programs in languages that required 
the use of goto for control constructs, such as BASIC. There were many books and magazines with BASIC code 
listings in the 1970s and 1980s. These programs tended to be quite small, as not only did they have to be typed 
in from scratch, but the programs were intended for computers with very limited RAM: the Apple II, Commodore 
PET, and Tandy TRS-80 Model 1 were all available in 1977 with 4Kb of RAM (Reimer, 2005). A typical example is 
the program Hammurabi (Willaert, 2019), an economics simulator. It was already nearly a decade old when it was 
included in the early compendium 101 BASIC computer games (Ahl, 1973). The code, to our modern eyes, looks very 
primitive and is littered with goto statements (Figure 1).

Figure 1. A scanned extract from the book 101 BASIC computer games. Fourteen lines with 8 gotos!

In order to faithfully reproduce the code in a modern language while also retaining the flavour of the original code 
(Massey, 2014), some form of goto is required. As an example, here are the first 6 lines from the original code in 
Figure 1 translated to Python in Massey’s port:

label .line32Ø 
Q=get_number("HOW MANY ACRES DO YOU WISH TO BUY") 
if Q<Ø: 
    goto .line85Ø 
if Y*Q<=S: 
    goto .line33Ø 
sub71Ø() 
goto .line32Ø 
label .line33Ø 
if Q==Ø: 
    goto .line34Ø

A second common use of goto is where the control constructs of the programming language are not powerful or 
convenient enough to express the control flow that the programmer has in mind. One such example, “Centralized 
exiting of functions”, is explicitly condoned in the Linux kernel coding style guide (The Linux kernel documentation, 
n.d.). In Python a centralised exit of a function might be idiomatically constructed using a try-except-else-finally 
block.
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Figure 2. Table representation of a state machine for parsing simple mathematical expressions.

Another example where a goto is convenient is when coding a state machine. For example, a typical state machine 
implementing a shift-reduce parser for a modern programming language may have many hundreds of states in the 
state machine. Non-goto approaches to large state machines might use tables (e.g., YACC, Bison) or a loop with a 
switch statement. In either case, a core loop is required to iterate for each state transition.

Figure 2 shows an example of a table-style finite state machine for an LR parser with 12 states that implements 
a simple mathematical expression parser, including the four basic operators and parentheses. While typically 
such state machines are represented as tables, an early attempt at directly representing a parser’s state machine 
using goto statements (Pennello, 1986) resulted in speedups of 6–10 times over a table-driven approach, though 
this approach directly generated assembly code. A later approach generated the parser state machine in c code 
and strived for compatibility with the popular early parser generator YACC, and yielded speedups of 2–6 times 
(Bhamidipaty & Proebsting, 1998).

Even with modern structured programming control flow constructs, the goto statement still has some potential 
niche applications where it is the best tool for the job.

ADDING A GOTO STATEMENT TO PYTHON

The first attempt to add goto to Python (Hindle, n.d.), a 2004 April Fool’s joke, used the sys.settrace function 
of Python, which registers a function that is then called before executing every line of code. The sys.settrace 
function was intended for implementing a debugger and greatly slows a running program, but it is powerful. 
Hindle’s version also included the humorous comefrom statement (the nefarious opposite of the goto statement). 

A more efficient way to add goto to Python is to take advantage of the dynamic nature of the Python runtime 
environment to rewrite the Python bytecode for a function. This is the approach used by the code implemented 
by the author (Cerecke, n.d.) and discussed in the remainder of this section. The source code is available at https://
github.com/cdjc/goto. Only the reference implementation of Python (https://python.org) is compatible with the 

LR(1) Parsing Table
id + × ( ) $ E T F

0 shift 5 shift 4 1 2 3
1 shift 6 accept
2 E → T shift 7 E → T E → T

3 T → F T → F T → F T → F

4 shift 5 shift 4 8 2 3
5 F → id F → id F → id F → id

6 shift 5 shift 4 9 3
7 shift 5 shift 4 10
8 shift 6 shift 11
9 E → E + T shift 7 E → E + T E → E + T

10 T → T × F T → T × F T → T × F T → T × F

11 F → ( E ) F → ( E ) F → ( E ) F → ( E )

https://github.com/cdjc/goto
https://github.com/cdjc/goto
https://python.org
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goto implementation discussed in this paper, as other implementations (such as Jython, IronPython and PyPy) take 
a different runtime approach.

Though we often think of Python as interpreted, rather than compiled like other languages that use a bytecode 
interpreter (or “VM”) such as Java (the JVM) or C# (the .NET CLR), this is technically incorrect. In Python the 
compilation step is hidden – there is no separate compile-then-run steps in Python, like there are in Java or C#.

These are the high-level requirements before goto statements can be added to Python using bytecode rewriting:

1.	 Access a function’s bytecode at runtime.

2.	 Set a function’s bytecode at runtime.

3.	 Mark a function as requiring a rewrite of its bytecode.

4.	 Specify labels and gotos within the bounds of current Python syntax.

Requirement 1 is met in Python, as each function has a corresponding code object (accessed via the function’s  
code  attribute), and each code object has an attribute to get the bytecode string for the code object. The 

helpful dis module in the standard library provides a function that can produce a disassembly of another function.

Requirement 2 is met by the CodeType constructor in the types standard library module, through which a 
new code object can be created. A recent addition to Python (version 3.11) makes this more convenient, with the 
replace function of a code object. Furthermore, this new code object can then be assigned to a function’s code 
object at runtime. 

Requirement 3 is met by using a Python function decorator – a convenient language feature for creating and using 
higher-order functions.

A convenient way requirement 4 can be met is by misusing object attribute access. For example, the line foo.bar 
in Python means ‘access the attribute bar from the object foo’. Although this is an expression, expressions are 
also valid Python statements, and replacing the object with the word ‘goto’ (or ‘label’) will allow specification of 
goto (and label) statements using Python syntax. This does not result in an error during compilation, as Python’s 
dynamic typing does not attempt to resolve variables during the compilation step. Without rewriting the function’s 
bytecode, running the function would result in the exception: NameError: name 'goto' is not defined

Figure 3 shows a trivial example of all four requirements in the Python interpreter. Line 3 imports the dis module 
for viewing the disassembly of a function. Line 4 creates a simple function named fn, where the first line (line 5 
of the listing) is specifying a label as if it was a Python attribute (requirement 4). The statement on line 8 prints a 
disassembly of the function. The label.start from the function results in two instructions in the bytecode, one 
for the global object label (lines 11–12) and one for start attribute access of that object. If the function were to 
be called at this point, Python would raise an exception because it cannot find any globals with the name label.

Line 17 extracts the bytecode of the function as an immutable Python bytes object (requirement 1); not all of the 
bytecode is visible in the Figure due to its truncation at the edge of the Figure. The many zeros in the bytecode 
(represented by \xØØ) are a new Python 3.11 feature that adds cache space within the bytecode to be used during 
runtime optimisations. In order to change the bytecodes, a list is created from the bytes, and the bytes representing 
the label .start line of the function are deleted (line 20).

Line 23 creates a new code object from the function’s existing code object, with the bytecodes replaced, and 
assigns the new code object to the function code object (requirement 2). The replace function is a new addition 
to Python 3.11; prior versions required creating a new code object from scratch.

Finally, the function is called (line 24) and the function’s new bytecode, now containing only code for the return 1 
statement, is executed and the resulting value (1) is returned.
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While Figure 3 illustrates the main mechanism by which a goto statement can be added to Python, there are still a 
few tasks remaining to create a working function decorator. At a high level these are:

1.	 Identify all the labels and gotos in the function. Check whether any gotos are missing labels, and labels are 
unique, and no illegal jumps are attempted.

2.	 Overwrite the instructions in the bytecode for each label and goto (and the following CACHE instructions) to 
NOP instructions.

3.	 For each position in the bytecode where the goto statement was, insert a JUMP_FORWARD or a JUMP_
BACKWARD to the corresponding label. Take care to stop any in-progress iterators if we are jumping out of an 
iterator loop. 

There are a few cautions that must be exercised: 
No jumping into any part of function that is inside a block that has some special initialiser or meaning. For example, 
for blocks, with blocks, and try blocks. It’s not clear what the semantics should be in those cases. Jumping into 
a while block is perfectly fine, though. Jumping out of a try block is also forbidden. There should be no way to 
bypass the finally block.

Figure 3. Trivial example showing the function bytecode rewriting mechanism required to implement goto in Python.
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A new feature of the recent Python 3.11 is the removal of unreachable code during bytecode compilation. This 
means that code that is only reachable by goto may be in danger of being optimised away. This makes the following 
code fail:

for ls in matrix: 
    for num in ls: 
        if num == 1234: 
            goto .foundIt 
 
# didn’t find it 
return False 
 
label .foundIt  # "unreachable" code removed by Python compiler 
return True

To work around the unreachable code elimination, the return False would need to have an always-true ‘guard’, 
such as if name : return False The Python special variable name  is normally always set to some 
value, either the name of the current module, or " main " (The Python language reference, n.d.) so the if-
statement will always be true, barring any explicit meddling with the module’s name  attribute.

There is a maximum depth of iterators (for loops) that can be accommodated in the bytecode before lengthening 
the bytecode is required – lengthening the bytecode is tricky, as any existing jumps in the bytecode may also have 
their destinations recalculated. Each iterator that must be stopped before jumping must be removed from the top 
of the stack with a POP_TOP bytecode. By reusing the CACHE instructions where the goto statements appear in the 
bytecode, up to 12 instructions can be overwritten before the bytecode list itself has to be extended. This allows up 
to 11 POP_TOP instructions before the jump instruction. The current implementation limits the nested iterators to 
10, which seems more than adequate for a reasonable function. The remaining 2 bytes allow for an extra instruction 
in case the jump offset is greater than what can be represented in one byte, and an EXTENDED_ARG opcode is 
required.

Each instruction in Python bytecode uses 2 bytes: one for the opcode, and one for the argument. For an opcode 
requiring a value larger than one byte, up to three preceding EXTENDED_ARG opcodes are used to add as many 
higher-order bytes as required. If a jump over 255 instructions is required, then an extra EXTENDED_ARG instruction 
will need to be inserted. This must be done with care, as inserting an EXTENDED_ARG instruction also changes 
the length of the jump by +1 (for a backward jump) or -1 (for a forward jump). The code assumes that jumps will 
never be more than what would fit in 2 bytes (65536 would be a very long jump!) and so will only ever need a single 
EXTENDED_ARG bytecode instruction.

A full example, showing the import, the decorator, a goto, a label, and two calls of the goto-decorated function, is 
shown in Figure 4.
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RESULTS

Implementing state machines is one of the main uses of a goto statement. To gain an approximate measure of the 
speed of using gotos for state machines compared to other methods, an example state machine was implemented 
using four methods:

1.	 The popular python-statemachine library (Macedo, n.d.).

2.	 Python for-loop around the Python match statement. Each case in the match statement matches an input 
character, and the next state is set based on the current state using if statements.

3.	 Using the equivalent regular expression in Python. The regular expression matching (and building) code is 
implemented in C inside the Python interpreter. The regular expression corresponding to the state machine 
was compiled in Python using the following regular expression string:  
r'\d+(\.\d+)?(e[+-]\d+)?(\+\d+(\.\d+)?(e[+-]\d+)?)*\$'

4.	 Using the goto library described in this paper and using labels for states, and goto for transitions.

The state machine used for the test (Figure 5) recognises valid expressions consisting of a sum of floating point 
numbers. Each character in the input string triggers a transition to another state if that character is part of a valid 
string. The state machine is non-trivial enough for a reasonable test, yet small enough to be easily and quickly 
implemented (and debugged!) using a variety of methods. The implementation details are in the goto_test_
speed.py file of the associated GitHub project (https://github.com/cdjc/goto).

Figure 4. An example of using the goto decorator in Python.

https://github.com/cdjc/goto
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For the speed comparison between the methods, a 30,000 character randomly generated string exercising all non-
final transitions of the finite state machine was generated. The Python standard library timeit module was used to 
time each method. Performance was measured on an i7-7820HQ laptop with 32GB RAM running Windows 11.

Table 1. Speed of different finite state machine implementations.

Time to process 30,000 characters Slowdown compared to goto method

Python-statemachine 504ms 180×

For-loop with match 21ms 7.5×

Regular expression 3.1ms 1.1×

Github.com/cdjc/goto 2.8ms 1×

Table 1 shows that the goto implementation presented in this paper is far superior in speed to the two other ‘pure’ 
Python implementations for programming state machines. The regular expression speed was comparable, which 
is perhaps surprisingly slow considering it does not execute any Python bytecode when matching the input (other 
than the regular expression match method call), but rather calls in to the regular expression module written in C 
inside core Python.

It can be argued that the goto implementation’s much faster speed is somewhat offset by its lower readability (the 
regular expression suffers from this as well) and by being non-standard. Knuth’s aphorism “premature optimization 
is the root of all evil” (Knuth, 1974, p. 268), in a paper about structured programming with gotos, is perhaps 
appropriate here.

CONCLUSION AND RECOMMENDATIONS

The dynamic nature of Python, along with its object introspection capabilities, provides a way to implement goto 
in Python at runtime. This technique could be used for other situations where directly manipulating bytecode is 
required. A major disadvantage is the instability of the Python bytecode specification; it is subject to significant 
changes between language versions with no effort to maintain backward compatibility. Also, the technique as 
implemented is only applicable to the standard reference implementation Python (CPython).

Wanting to use the goto statement in Python is a niche use case mostly restricted to porting some old code while 
retaining the flavour of the original code. State machines are another possible use case, and the goto statement 
provides a very fast alternative to other pure-Python state machine implementations. This speed does come at the 
cost of both reliability (because the underlying bytecode is subject to incompatible changes between versions) and 
readability, as the non-standard use of familiar Python constructs will be unfamiliar to many. 

Figure 5. Finite state machine for recognising an expression of a sum of floating point numbers.
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