

Al-Powered Occupancy Detection in Smart Buildings Using IoT Environmental Sensors and LightGBM

Sameh Foulad

Download the PDF

https://doi.org/10.34074/proc.250102

Abstract

This research investigates environmental IoT sensor data for real-time occupancy detection in smart buildings. We evaluated three machine learning models using the UCI occupancy detection dataset: random forest, SVM, and LightGBM on temperature, humidity, CO₂ and light intensity features. LightGBM achieved 99% accuracy with robust performance even in low-light scenarios where conventional sensors typically fail. Our findings demonstrate that CO₂ and humidity are effective proxies for metabolic activity, enabling the detection of passive occupancy such as sleeping in darkness. These results highlight the potential of lightweight, sensor-driven AI models for energy-efficient building automation and space optimisation, particularly in commercial environments.

Al-Powered Occupancy Detection in Smart Buildings Using IoT Environmental Sensors and LightGBM by Sameh Foulad is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This publication may be cited as:

Foulad, S. (2025). Al-Powered Occupancy Detection in Smart Buildings Using IoT Environmental Sensors and LightGBM. In S. Varastehpour & M. Shakiba (Eds.), *Proceedings: AIOT Global Summit 2025: Economic Growth, 15–16 July* (pp. 7–12). ePress, Unitec. https://doi.org/10.34074/proc.250102

An ePress publication

epress@unitec.ac.nz
www.unitec.ac.nz/epress/

Unitec Private Bag 92025 Victoria Street West Auckland 1142 New Zealand

