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Abstract
Deep learning algorithms are a subset of machine learning algorithms that aim 
to explore several levels of the distributed representations from the input data. 
Recently, many deep learning algorithms have been proposed to solve traditional 
artificial intelligence problems. In this review paper, some of the up-to-date 
algorithms of this topic in the field of computer vision and image processing 
are reviewed. Following this, a brief overview of several different deep learning 
methods and their recent developments are discussed.

Introduction

Researchers have been trying to simulate the human brain through machines 
(computers) for decades, to create computers that can learn, think, and make 
decisions by themselves. To achieve this goal, artificial intelligence (AI) was born 
(Brunette et al., 2009). AI is an area of computer science that emphasises the 
creation of intelligent machines that work and react like humans. AI has become 
an essential part of the technology industry these days. Currently, AI is widely 
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used in speech recognition, image recognition, learning, planning and problem 
solving (Brunette et al., 2009).

Machine learning is an application of AI that provides systems the 
ability to automatically learn and improve from experience without being 
explicitly programmed (Brunette et al., 2009; Dutton & Conroy, 1997). Machine 
learning focuses on the development of computer programs that can access 
data and use it to learn for themselves. In machine learning, there is some 
data (dataset), and then a model (method) is trained using this data in order 
to predict new data. In other words, the model tries to teach a computer 
to do something special. For example, a recognition model is designed to 
distinguish photos of cats from a group of photos that include cats and other 
animals or humans. After each attempt, the model receives its prediction 
result and understands how it predicted. The feedback is presented to the 
model in the form of an error in order for it to adjust itself to get better results 
and eliminate errors. Machine learning algorithms can now enable computers 
to communicate with humans, autonomously drive cars, write and publish 
sports-match reports and find terrorist suspects (Dutton & Conroy, 1997), and 
has begun to have an impact on most industries and the jobs within them. 

Deep learning is an emerging area of research and modern application. 
It is a very widespread and demanding field, relevant to industry, business and 
healthcare. Deep learning methods have gained popularity because they often 
outperform conventional (i.e., shallow) machine learning methods and can 
extract features automatically from raw data with little or no preprocessing. 
One of the key reasons deep learning is more powerful than classical machine 
learning is that it creates transferable solutions (Bengio, 2009). Deep learning 
algorithms are able to create transferrable solutions through neural networks: 
that is, layers of neurons/units. In addition, machine learning algorithms almost 
always require structured data, whereas deep learning networks rely on layers 
of artificial neural networks (ANN). Furthermore, deep learning algorithms 
are able to solve complex problems that require discovering hidden patterns 
in the data and/or a deep understanding of intricate relationships between 
a large number of interdependent variables (Bengio, 2009). Deep learning 
combines a number of important research fields, including the internet of 
things (IoT), e-healthcare, cybersecurity, bioinformatics and optimisation, 
which are interdependent. Deep learning has the potential to drive innovations 
in industry, healthcare or business intelligence, and its use will increase in the 
future. 

In recent years, deep learning has been extensively studied in the 
field of computer science and a number of related approaches have been 
developed. Generally, these methods are based on the basic method from 
which they are derived. They are divided into four different categories: 
convolutional neural networks (CNN), restricted Boltzmann machines (RBM), 
autoencoder (AE) and sparse coding (SC) (Schmidhuber, 2015; Krizhevsky et 
al., 2012; K. He et al., 2016; Cireşan et al., 2012; Mikolov et al., 2013). This 
review paper discusses the categories and sub-categories of these methods, 
including their pros and cons, and the fields in which they can be used in 
computer sciences, especially computer vision and image processing fields.

Figure 1 shows the genealogy of deep learning, along with the work 
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that has been done on each method. To cover the types of deep learning 
algorithms, the following four sections will: review different algorithms of the 
CNN; explain the history of RBMs and categorise the different types of RBM 
algorithms; and explain the AE and SC algorithms respectively. The authors 
then discuss and conclude this review.

Convolutional Neural Networks (CNN)

CNNs are one of the most important deep learning methods, in which multiple 
layers are trained in a powerful way (Krizhevsky et al., 2012). This method is 
very efficient and it is one of the most common methods in various computer 
vision applications. In general, a CNN consists of three main layers: the 
convolutional layer, the pooling layer and the fully connected layer. Different 
layers perform different tasks.

Figure 1. Deep learning genealogy.
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 The main advantage of using a CNN is that it can extract the spatial 
features from the data using its kernel, which other networks cannot do 
(Cao et al., 2018). For example, CNN can detect edges, distribution of 
colours, etc., in the image, making these networks very robust in image 
classification and other similar data containing spatial properties. In terms 
of using CNN, we generally refer to a two-dimensional CNN which is used 
for image classification. But there are two other types of CNNs used in the 
real world, which are one-dimensional and three-dimensional CNNs (Cao et 
al., 2018). One-dimensional CNN (Conv1D) is used for time-series data. In 
Conv1D, the kernel slides along one dimension. This data is collected from 
an accelerometer that a person is wearing on their arm. Data represents the 
acceleration in all three axes. One-dimensional CNN can perform activity-
recognition tasks from accelerometer data, such as if the person is standing, 
walking, jumping, etc. This data has two dimensions. The first dimension 
is time-steps, and the other is the values of the acceleration in three axes. 
Similarly, one-dimensional CNNs are also used on audio and text data since 
we can also represent the sound and texts as time-series data (Cao et al., 
2018). Two-dimensional CNN (Conv2D) is the standard CNN that was first 
introduced in LeNet-5 architecture. Conv2D is generally used on image 
data. It is called two-dimensional CNN because the kernel slides along two 
dimensions on the data (Cao et al., 2018). Three-dimensional CNN (Conv3D) is 
mainly used with 3D image data, such as magnetic resonance imaging (MRI) 
data. MRI data is widely used for examining the brain, spinal cord, internal 
organs and many more. A computerised tomography (CT) scan is also an 
example of 3D data created by combining a series of x-ray images taken from 
different angles around the body. Conv3D can be used to classify this medical 
data or extract features from it. One more example of 3D data is video, which 
is simply a sequence of image frames together. Conv3D can be applied to 
video as well since it has spatial features (Cao et al., 2018).
 There are two steps to training in each CNN: the feed-forward stage 
and back-propagation or post-propagation. In the first step, the input image is 
fed to the network, and parameters (the coefficients) are adjusted between 
each neuron and input data in order to operate the CNN. Then the network 
output is calculated. To adjust the network parameters (the coefficients), the 
output result is used to calculate the network error rate (Krizhevsky et al., 
2012). In order to calculate the error rate, the network output is compared 
with the correct answer through a loss function. The next step starts with the 
back-propagation stage based on the calculated error rate. At this point the 
gradient of each parameter is calculated according to the chain rule and all the 
parameters are changed according to their effect on the error in the network. 
With updated parameters, the next feed-forward phase can be run. After 
repeating a number of these steps, the network training will be ended.

TYPES OF CNN NETWORK LAYERS

A CNN is a powerful and efficient model which performs automatic feature 
extraction. Generally, a CNN is a hierarchical neural network with its 
convolutional layers interconnected with pooling layers, and there are several 
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fully connected layers. A CNN can be thought of as a combination of two 
components: feature extraction and classification. The convolution and pooling 
layers perform feature extraction (automatic feature extraction). 

 Convolutional layers: the CNN network uses different kernels to 
convolve the input image as well as the middle feature maps, which create 
different feature maps. The benefits of convolution operations are listed below 
(Zeiler, 2013):

• The weight-sharing mechanism in each feature map dramatically 
reduces the number of parameters.

• Local binding learns the relationship between neighbouring pixels.

• It causes the immutability and stability of the object to shift.

Due to the benefits introduced by convolution operations, some well-
known research articles have used it to replace fully connected layers to speed 
up the learning process (Szegedy et al., 2015; Oquab et al., 2015). One of the 
interesting ways to manage convolution layers is the Network in Network 
(NIN) method (M. Lin et al., 2013), in which the main idea is to replace the 
convolution layer with a small perceptron neural network that includes several 
layers fully connected to non-linear activation functions. As such, linear filters 
are replaced by non-linear neural networks. This method produces reasonable 
results in image classification.

 Pooling layers: a pooling layer is usually placed after a layer of 
convolution and can be used to reduce the size of feature maps and network 
parameters. Like convolution layers, pooling layers are unchanged (stable) 
towards the translation because of the neighbouring pixels in their calculations 
(Szegedy et al., 2015; Oquab et al., 2015). Pooling layer implementations, by 
using the max pooling function and the average pooling function, are the most 
common implementation methods. Using a max pooling filter of size 2 * 2 
and two strides, a feature map of size 8 * 8 creates an output of size 4 * 4 
(Szegedy et al., 2015; Oquab et al., 2015). 

 Boureau et al. (2010) provide a detailed theoretical analysis of max 
pooling and average pooling efficiency. Scherer et al. (2010) also make a 
comparison between the two operations and find that max pooling can lead 
to faster convergence, better generalisation (generalisation improvement), and 
selection of invariant features. In recent years, various rapid implementations 
of different types of CNNs have been performed on graphics processing units 
(GPUs), most of which use max pooling operations (Krizhevsky et al., 2012; 
Cireşan et al., 2011).

 Much research has been done on pooling layers in comparison to the 
other three layers on CNN. There are three popular approaches to this layer 
and each pursues different goals. These approaches are as follows:

•	 Stochastic pooling: one drawback of max pooling is that it is 
sensitive to over-fitting in the training set (Deng, 2014), making it 
difficult to generalise (Zeiler, 2013). To solve this problem, Zeiler 
and Fergus (2013) propose a pooling stochastic method in which 
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certain pooling operations are replaced by a random procedure. 
This random procedure is a random selection of values within each 
pooling area based on a polynomial distribution (Schmidhuber, 
2015). The operation is similar to the standard max pooling, with 
many copies of the input image having deforming local features 
(Bengio, 2013). The stochastic nature is useful in preventing the 
problem of over-fitting, which is why it has been used in this 
method (Bengio, 2009).

• Spatial pyramid pooling (SPP): typically, neural-network-based 
methods require a fixed-size input image. This limitation may reduce 
detection accuracy for images of arbitrary sizes. In order to remove 
this limitation, K. He et al. (2015) used a CNN, replacing the last 
pooling layer with an SPP layer. This layer is capable of extracting 
fixed-sized symbols (images) from arbitrary images (or areas). This 
provides a flexible solution for managing different scales, sizes and 
aspect ratios that can be used in most of the CNN architecture and 
enhance its performance (Bengio, 2009).

• Def-pooling: managing deformation is a major challenge in 
computer vision (Bengio et al., 2013), especially in the field of 
object recognition. Max pooling and average pooling are useful 
for deformation management but they are not capable of learning 
deformation constraints and geometrical modelling of object 
components. In order to better deal with deformation, Ouyang et 
al. (2014) introduced a new deformation-constrained pooling layer. 
This is known as the def-pooling layer. It enriches the deep model by 
learning the deformation of visual patterns. This layer can be used 
instead of the max pooling layer at most of the level of abstraction 
(Ouyang et al., 2014).

By combining several different types of pooling layers, each developed with 
a different purpose and method, the efficiency of a neural network can be 
increased.

Fully connected layer: after the last pooling layer, there are fully 
connected layers that convert the 2D feature maps into 1D feature vectors 
to continue the feature representation process. The fully connected layers 
act like their counterparts in traditional artificial neural networks (ANN) and 
comprise approximately 90% of the parameters of a CNN network. The fully 
connected layer allows us to present the grid result in a vector of a specified 
size. This vector can be used to categorise images (Krizhevsky et al., 2012) 
or to continue further processing (Girshick et al., 2014). Restructuring of fully 
connected layers is not common, but one example was carried out in the 
transferred learning method (Oquab et al., 2014), in which the parameters 
learned by ImageNet (Krizhevsky et al., 2012) were retained, but the last fully 
connected layer was replaced with two fully connected layers to allow the 
network to adapt to new vision recognition activities (Oquab et al., 2014).
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 The big problem with these types of layers is that they have too many 
parameters. This results in a very high processing cost to spend on training, so 
a commonly used method with satisfactory results is to either remove these 
layers altogether or reduce the number of connections in these layers through 
different methods. For example, GoogLeNet (Szegedy et al., 2015) designed a 
deep and extensive network where the computational cost was kept constant. 
This was done by switching from a fully connected architecture to a scattered 
connected architecture.

CNN ARCHITECTURE

With the recent advances in the use of CNN in the field of computer vision, 
several CNN architectures have emerged. In improving and developing 
the performance of different systems/applications, model architecture is a 
critical factor. Several developments and modifications have been achieved 
in CNN architecture over the last years, including structural reformulation, 
regularisation, parameter optimisations, etc. It should be noted that the key 
upgrade in CNN performance occurred largely due to the processing-unit 
reorganisation, as well as the development of novel blocks. In particular, the 
most novel developments in CNN architectures were performed on the use of 
network depth. In this section, the most popular CNN architectures, beginning 
with the AlexNet model and ending with the ResNet model, will be discussed 
and the characteristics of each of their applications then summarised. Studying 
these architecture features (such as input size, depth and robustness) is the 
key to help researchers to choose the most suitable architecture for their 
target task. The configurations and achievements of several conventional CNN 
models are presented in Table 1. These methods have been classified based 
on the input, depth and robustness features with insight into the computer 
vision and image processing fields.

Method Year Configuration Achievement

AlexNet 2012 5 convolution layers + 3 fully connected 
layers

An important architecture that has attracted 
many researchers to the field of computer 
vision

Clarifai 2013 5 convolution layers + 3 fully connected 
layers

It made what was happening inside the 
network visible

SPP 2014 5 convolution layers + 3 fully connected 
layers

By providing spatial pyramid pooling, the 
image-size limitation was eliminated 

VGG 2014 13-15 convolution layers + 3 fully connected 
layers

Full evaluation of incremental depth network 

GoogLeNet 2014 21 convolution layers + 1 fully connected 
layer

Increases network depth and width without 
increasing computing requirements 

ResNet 2015 152 convolution layers + 1 fully connected 
layer

Increases grid depth and provides a way to 
prevent gradient saturation

Table 1. Top CNN models along with their configuration and achievements.
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AlexNet

The history of deep CNNs began with the appearance of LeNet (LeCun et al., 
1995). At that time, the CNNs were restricted to handwritten digit recognition 
tasks, which cannot be scaled to all image classes. In deep CNN architecture, 
AlexNet is highly respected (Krizhevsky et al., 2012), as it achieved innovative 
results in the fields of image recognition and classification. Krizhevesky 
et al. (2012) first proposed AlexNet and consequently improved the CNN 
learning ability by increasing its depth and implementing several parameter-
optimisation strategies.

Clarifai

In 2013, Zeiler and Fergus (2014) introduced a new visual representation 
method, Clarifai, which could be used to observe activities within layers of a 
neural network. These visualisations allowed them to find architectures that 
were far superior to AlexNet in the ImageNet category competition.

Spatial pyramid pooling (SPP)

To solve the constraint requiring a fixed resolution for input images, K. He et 
al. (2015) proposed a new spatial pyramid pooling (SPP) strategy to eliminate 
the image-size constraint. The SPP-net architecture obtained by this method, 
despite the different designs, has been able to improve accuracy in a variety of 
CNN architectures.

VGGNet and GoogLeNet

In addition to the commonly used configuration of CNN, there are other 
ways of trying to explore deeper networks. VGGNet (Simonyan & Zisserman, 
2014), by adding more layers of convolution and increasing the use of small 
convolution filters, is able to make deeper networks. Similarly, Szegedy et al. 
(2015) developed a model called GoogLeNet, which has a very deep structure 
consisting of 22 layers. Despite the high classification performance achieved 
by different models, CNN-based models and their various applications are 
not limited to image classification. Based on these models, new frameworks 
have been developed that can be used for other difficult tasks such as object 
detection, semantic segmentation, etc.

ResNet

There are two well-known derivative frameworks: RCNN (regions with CNN 
features) (Girshick et al., 2014) and FCN (fully convolutional network) (Long et 
al., 2015), which were originally designed for object detection and semantic 
segmentation. The main idea behind RCNN is to create multiple object 
proposals, extract features from each using a CNN, and then categorise 
each candidate window, with a linear support vector machine (SVM) for each 
category. Recognition using the regions scheme has received encouraging 
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performance in object detection and has gradually become a general 
architecture for recent promising object detection algorithms (Gkioxari et al., 
2015; Zhu et al., 2015).

 However, RCNN’s performance relies too much on object location 
accuracy, which may limit its power. In addition, the creation and processing of 
a large number of proposals may reduce its optimality. Recent advances in this 
area have focused mainly on these two topics (Gkioxari et al., 2015; Ren et al., 
2015; Zhu et al., 2015; Hariharan et al., 2014).

 RCNN uses CNN models as a feature extractor and makes no changes 
to the network. However, FCN offers a way to redesign CNN models into 
convolutional networks and it is capable of producing optimal outputs (Yoo et 
al., 2015). Although FCN is mainly provided for semantic segmentation, this 
technique can be used in other applications, such as image segmentation (Yoo 
et al., 2015), edge detection (Xie & Tu, 2015), etc.

Restricted Boltzmann Machine (RBM)

A restricted Boltzmann machine (RBM) is a generative stochastic neural 
network, developed by Hinton and Sejnowski in 1986. An RBM is a variant of 
a Boltzmann machine that has a limit on which visible units and hidden units 
form a bipartite graph (Hinton & Sejnowski, 1986). This limitation creates 
more-efficient training algorithms, especially the gradient-based contrastive 
divergence algorithm (Carreira-Perpinan & Hinton, 2005). Since this model is a 
bipartite graph, the hidden units (H) and the visible units (V1) are conditionally 
independent (Carreira-Perpinan & Hinton, 2005). Therefore, in the following 
equation:

both H and V1 satisfy the Boltzmann distribution. With input V1 we can get H 
through P (HV1). Similarly, we can obtain the value of V2 through P (H2V1). By 
adjusting the parameters, we can minimise the difference between V1 and 
V2, and the resulting H will act as a good property of V1 (Carreira-Perpinan & 
Hinton, 2005). Hinton (2012) provides a detailed explanation and a practical 
way to train RBMs. Cho et al. (2011) discuss the main problems of RBM 
training and their underlying causes, and propose a new algorithm including 
an adaptive learning rate and improved gradient for fixed problems. A famous 
example of RBM can be found in Nair and Hinton (2010), in which rectified 
linear units are used in order to improve the performance of RBMs. This model 
approximates binary units with noisy rectified linear units in order to preserve 
information about the relative intensities as the information flows through the 
layers. This refinement works well in this model, and it is also widely used in 
various CNN-based methods (Krizhevsky et al., 2012; Zeiler & Fergus, 2013).

Using RBMs as learning modules, we can create deep belief networks 
(DBNs), deep Boltzman machines (DBMs) and deep energy models (DEMs) 
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segmentation. The main idea behind RCNN is to create multiple object 
proposals, extract features from each using a CNN, and then categorise each 
candidate window, with a linear Support Vector Machine (SVM) for each 
category. The recognition using regions scheme has received encouraging 
performance in object detection and has gradually become a general architecture 
for recent promising object detection algorithms (Gkioxari et al., 2015; Zhu et al., 
2015).

However, RCNN’s performance relies too much on object location accuracy, 
which may limit its power. In addition, the creation and processing of a large 
number of proposals may reduce its optimality. Recent advances in this area 
have focused mainly on these two topics (Gkioxari et al., 2015; Ren et al., 2015; 
Zhu et al., 2015; Hariharan et al., 2014).

RCNN uses CNN models as a feature extractor and makes no changes to the
network. However, FCN offers a way to redesign CNN models into convolutional 
networks and it is capable of producing optimal outputs (Yoo et al., 2015). 
Although FCN is mainly provided for semantic segmentation, this technique can 
be used in other applications such as image segmentation (Yoo et al., 2015), edge 
detection (Xie & Tu, 2015), etc. 

Restricted Boltzmann Machine (RBM)

A Restricted Boltzmann Machine (RBM) is a generative stochastic neural 
network, developed by Hinton and Sejnowsky in 1986. An RBM is a variant of a 
Boltzmann machine that has a limit on which visible units and hidden units form
a bipartite graph (Hinton & Sejnowsky, 1986). This limitation creates more 
efficient training algorithms, especially the gradient-based contrastive 
divergence algorithm (Carreira-Perpinan & Hinton, 2005). Since this model is a 
bipartite graph, the hidden units (H) and the visible units (V1) are conditionally 
independent (Carreira-Perpinan & Hinton, 2005). Therefore, in the following
equation: 

P (HV1) = P (H1V1)P (H2V1)...P (HnV1), (1) 

Both H and V1 satisfy the Boltzmann distribution. With input V1 we can get H through 
P (HV1). Similarly, we can obtain the value of V2 through P (H2V1). By adjusting the 
parameters, we can minimise the difference between V1 and V2, and the resulting H will 
act as a good property of V1 (Carreira-Perpinan & Hinton, 2005). 
Hinton (2012) provides a detailed explanation and a practical way to train 
RBMs. Cho et al. (2011) discuss the main problems of RBM training and its 
underlying causes, and propose a new algorithm including an adaptive learning 
rate and improved gradient for fixed problems. A famous example of RBM can 
be found in Nair and Hinton (2010), in which rectified linear units are used in
order to improve the performance of RBMs. This model approximates binary 
units with noisy rectified linear units in order to preserve information about the 
relative intensities as the information flows through the layers. This refinement 
works well in this model, and it is also widely used in various CNN-based 
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(Ngiam et al., 2011). The comparison between these three models is illustrated 
in Figure 2.

Table 2 represents a summary of these three models, along with their portfolio 
(Guo et al., 2016).

Method Attributes Advantage/s Disadvantage/s

DBN Directional junction in the upper 
two layers and directional junc-
tions in the layers

1) Properly initialises the network 
and partially prevents it from falling 
into weak local optimality
2) The process of training is un-
supervised, which eliminates the 
need for labelled data for training 

Creating a DBN model is 
computationally costly due to 
the initialisation process

DBM Indirect connections between all 
layers in the network

Handles ambiguous inputs by using 
top-down feedback

Joint optimisation is time 
consuming 

DEM Definite hidden units in the bot-
tom layers and random hidden 
units in the top hidden layers 

Creates better productive models 
by allowing the lower layers to 
adapt to the upper layers’ training 

The initial weight gained may 
not be a good convergence 

DEEP BELIEF NETWORKS (DBNS)

The DBN was provided by Hinton (Bengio et al., 2013). This network was a 
remarkable breakthrough in deep learning. A DBN is a probabilistic generative 
model that provides a common probability distribution over visible data and 
tags. A DBN first uses an efficient layer-by-layer greedy learning strategy to 
initialise the deep network parameters and then carefully align all the weights 
with expected outputs (fine-tune) (Bengio et al., 2013). The DBN process has 

Figure 2. Comparison of three deep models, DBN, DBM and DEM (Ngiam et al., 2011, p. 1).

Table 2. Summary of RBM-based methods and portfolio completed.
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two benefits (Arel et al., 2010):

1) Provides a good initialisation for the network, and thus barely responds 
to the parameter selection, and may cause local optima to be partially 
weak.

2) Unsupervised learning procedure with no labels. It does not require a 
class label so eliminates the need for tagged data for training. Creating a 
DBN model is computationally costly because it requires multiple RBM 
training and it is unclear how to maximise the likelihood of training to 
optimise the model (Bengio et al., 2013). Many successful pieces of 
research have been done on DBNs and, as a result, many species have 
been produced (Lee et al., 2008; Lee et al, 2009; Nair & Hinton, 2009).

Nair and Hinton (2009) developed a modified DBN in which the top-layer 
model used a third-order Boltzmann machine to detect object recognition. The 
model presented in Lee et al. (2008) is the two-layer model, which captures 
natural images using sparse coding and RBMs, where the first layer learns 
local, directional and edge filters, and the second layer receives a variety of 
contour features along the edges and intersections.
 To improve the model’s power against occlusion and random noise, 
Lee et al. (Tang & Eliasmith, 2010) used two strategies. The first strategy 
was to regularise sparse connections in the first layer of the DBN in order 
to regularise the model, and the second strategy was the development of a 
probabilistic denoising algorithm. There is a major limitation if we intend to 
use this network for computer vision activities. The problem with DBNs is 
that they do not consider the 2D structure of an input image. To address this 
problem, convolutional deep belief networks (CDBNs) were introduced (Lee 
et al., 2009). The CDBN utilises spatial information of neighbouring pixels with 
the introduction of the RBM canon, and thus creates an invariant translation 
model that is easily scalable. This algorithm was further extended by Huang et 
al. (2012).

DEEP BOLTZMANN MACHINES (DBMS)

A DBM was proposed by Salakhutdinov and Hinton (2009), which is another 
deep learning algorithm in which processing units are placed in layers. The 
unbiased graphical model and the bottom layers form a directional productive 
model, the DBM having connections throughout its structure.

 Similar to the RBM, the DBM is a subset of the Boltzmann family. The 
difference is that DBMs have multiple layers containing hidden units, which 
are the units in individually numbered layers conditionally independent of even-
numbered layers, and vice versa.

              With visible units, the calculation of posterior distribution over hidden 
units is no longer traceable, which is the result of interactions between 
hidden units. During network training, a DBM jointly trains all layers of a 
specific, unsupervised model, and instead of directly maximising probability, 
uses the stochastic maximum likelihood algorithm (SML) to maximise lower 
boundaries in probability (Younes, 1999). In other words, it means using the 
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Markov chain Monte Carlo (MCMC) method between each parameter. In order 
to prevent weak local minima from inactivating many hidden units, a DBN 
training strategy is also applied to layers in the pre-training DBM network, 
which is very similar to what is done in DBN (Bengio et al., 2013). Co-learning 
has delivered promising improvements in both the probability and efficiency 
of feature learner classifications. But the important drawback of DBMs is the 
complexity of approximation inference, which is much higher than for DBNs. 
This makes common optimisation of DBM parameters for large datasets 
impractical. To increase the efficiency of DBMs, some researchers have 
introduced an approximate inference algorithm (Salakhutdinov & Larochelle, 
2010; Salakhutdinov & Hinton, 2012) that uses a recognition model to initialise 
latent variables in all layers. It effectively speeds up inference. There are many 
other ways to improve the effectiveness of DBMs. These improvements 
can occur either at the pre-training stage (Salakhutdinov & Hinton, 2012; 
Cho et al., 2013) or at the beginning of training (Montavon & Müller, 2012; 
I. J. Goodfellow et al., 2013). For example, Montavon & Müller (2012) 
introduced a centring trick to improve the stability of a DBM and make it more 
discriminative and generative. The multi-prediction training scheme was used 
to train the DBM joint (I. Goodfellow et al., 2013), which resulted in a far better 
performance than previous methods in classifying the images outlined in I. J. 
Goodfellow et al. (2013).

DEEP ENERGY MODELS (DEMS)

The DEM was proposed by Ngiam et al. (2011), and is a new way of teaching 
deep architecture. Unlike DBNs and DBMs, which share multiple stochastic 
hidden layers, a DEM has only one layer containing stochastic hidden units for 
optimal training and inference.

 This model uses feed-forward neural networks to model the energy 
landscape and is able to train all layers at once. By evaluating the performance 
of this model on natural images, it is shown that multi-layer co-instruction 
improves the quality and quantity of DBN training (in terms of training 
samples). Ngiam et al. (2011) used the hybrid Monte Carlo (HMC) to train 
this model. There are other options, such as contrastive divergence, score 
matching, etc. Similar work can also be found in Cho et al. (2011) and Elfwing 
et al. (2015).

 Although RBMs, like CNNs, are not suitable for computer vision 
applications, there are some good examples of RBMs being used for 
computer vision activities. The shape Boltzmann machine (SBM) was 
proposed by Eslami et al. (2014) for using in binary shape image modelling 
work; it also distributes high-quality probability distributions on object shapes 
in order to realistically derive realism from samples from the distribution and 
generalisation to new examples with the same shape class (Eslami et al., 
2014). Kae et al. (2013) combined conditional random fields (CRF) and RBM 
models to model both local and global structure of face segmentation. This 
has led to a steady decline in face-tagging errors. A new in-depth architecture 
for telephone recognition (Dahl et al., 2010) combines the feature extraction 
module of an RBM mean-covariance with a standard DBN. This method 
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addresses both the representational inefficiency issues of Gaussian mixture 
models (GMMs) and an important limitation in previous work that DBNs used 
in voice recognition (Dahl et al., 2010).

Autoencoder (AE)
The AE is a special type of ANN that is used to encode learning optimally 
(Liou et al., 2014). Instead of network training and predicting the target value 
of Y for X input, you find a training AE to reconstruct your X input. Therefore, 
the output vectors will have the same dimension as the input vector. During 
this process, the AE is optimised by minimising the reconstruction error. The 
corresponding code is the same attribute learned. Generally, a single layer 
is not capable of receiving distinct features from raw data. Researchers are 
currently using a deep AE that sends the learned code from the previous AE to 
the next AE to get the job done.

The deep AE was developed by Hinton and Salakhutdinov (2006) and it is 
still extensively studied in recent articles (Zhang et al., 2014; Y. Zhou et al., 
2014; Jiang et al., 2013). A deep AE is often trained with some kind of back-
propagation operation such as the conjugate gradient method. Although this 
model is often efficient and effective, it can be extremely ineffective if errors 
occur in the first layers. This may cause the average educational data network 
to rebuild. A good way to eliminate this problem is to pre-train the network 
of initial weights that approximate the final solution (Hinton & Salakhutdinov, 
2006). There are also variants of AE that suggest keeping representations as 
consistent as possible with changes in input.

 In Table 3, a list of popular AE types is given, along with a summary of 
their features and benefits.

Method Attributes Benefits 

Sparse AE Adds s sparsity penalty to force the repre-
sentation to be sparse

1) Makes categories more separable 

2) Makes complex data more meaningful

3) Biological version system 

Denoising AE Recovers the correct input from a corrupt-
ed version

More robust to noise 

Contractive AE Adds an analytical contractual penalty to 
the reconstruction error function 

Better captures the local directions of variation 
dictated by the data 

Saturating AE Raises error reconstruction for inputs not 
near the data manifold 

Limits the ability to reconstruct inputs that are 
not near the data manifold 

Convolutional AE Shares weights among all locations in the 
input, preserving spatial locality 

Utilises 2D image structure 

Zero-bias AE Utilises proper shrinkage function to train 
AE without additional regularisation 

More powerful in learning representations on 
data with very high intrinsic dimensionality 

Table 3. A list of popular AE types along with a summary of their features.
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SPARSE AE (SAE)

SAEs seek to extract sparse features from raw data. Scattering of the features 
can be obtained either by penalising hidden unit biases (Varastehpour et al., 
2019a, 2019b; Lee et al., 2008; I. Goodfellow et al., 2009; Ranzato et al., 2007) 
or directly penalising the output of hidden unit values (I. Goodfellow et al., 
2009; Le et al., 2011). Sparse representations have several possible benefits 
(Ranzato et al., 2007):

• Using high-dimensional representations increases the likelihood 
that different clusters can be easily separated, as in SVM theory.

• Sparse representations provide us with a simple interpretation of 
complex input data in a number of sections.

• Biological vision uses scattered signals in the primary visual areas.

A very popular variant of the SAE is a locally-based nine-layer model 
with pooling and contrast normalisation (Le, 2013). This model allows the 
system to train a face finder without the need to label the images as face free. 
The resulting feature detector is very powerful for translation, scaling and out-
of-plane rotation.

DENOISING AE (DAE)

To increase the power of this model, Vincent introduced a model called the 
de-noising AE (DAE) (Vincent et al., 2008; Vincent et al., 2010) that is able to 
retrieve the correct input from the corrupted version. This forces the model 
to capture the distribution structure of the input. The structure of a DAE is 
illustrated in Figure 3.

Figure 3. DAE structure (Vincent et al., 2010, p. 3379)
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CONTRACTIVE AE (CAE)

CAE was proposed by Rifai et al. (2011) and is a sequence of DAE with a 
similar motivation for powerful representation learning (Bengio et al., 2013). 
While DAE powers all mapping operations by injecting noise into the training 
set, CAE achieves this by adding an analytical contractive penalty to the 
reconstruction error function.

 Bengio et al. (2013) explain significant differences between DAE and 
CAE, but Alain and Bengio (2014) state that DAE and one form of CAE are very 
close together. A DAE with small corruption noise can be considered a type of 
CAE, where the contractive penalty is on the whole renovation function rather 
than the encoder. Both DAE and CAE have been used successfully in transfer 
learning and unsupervised problems (Mesnil et al., 2011).

ZERO-BIAS AE

Most deep learning algorithms, such as CNN, RBM, etc., rely on spatial 
or sequential data attributes to learn. If the data is highly sparse, then the 
network learns ‘zeros.’ In essence, there is no real learning happening. There 
are ways to preprocess, such as oversampling to generate dense data, but 
this may not always work. By oversampling data, all the information is kept in 
the training set. On the other hand, the random oversampling may increase 
overfitting since it makes exact copies of the minority class examples. In this 
way, a symbolic classifier, for instance, might construct rules that are accurate 
but cover one replicated example. 

 Zero bias-AE (Konda et al., 2014) is one of the deep learning algorithms 
that is more potent in learning representations on data with very high 
intrinsic dimensionality and sparse features. Zero-bias AE was proposed by 
Konda et al. (2014) and quantises the input space with tiles proportional in 
quantity to the data density. They claimed that it is arguably the best way to 
represent data, given enough training data and enough tiles. It allows us to 
approximate any function reasonably well using only a subsequent linear layer 
to summarise regions using responses that are invariant to some changes 
in the input. Invariance, from this perspective, is a necessary evil and not a 
goal in itself. But it is increasingly essential for increasingly high-dimensional 
and sparse inputs (Konda et al., 2014). The response of a hidden unit in their 
models is defined by multiplying the filter response or squaring it, followed by 
a non-linearity. To reconstruct the input, the output of the hidden unit is then 
multiplied by the filter response itself, making the model bi-linear. As a result, 
reconstructions are defined as the sum of feature vectors, weighted by the 
active hidden linear coefficients. This may suggest interpreting the fact that 
these models work well on videos and other high-dimensional and sparse data 
as a result of using linear, zero-bias hidden units, too (Konda et al., 2014).
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Sparse Coding (SC)
SC is an unsupervised method used to learn an over-complete set of basic 
functions to describe input data (Olshausen & Field, 1997). Advantages of this 
method are as follows (Raina et al., 2007; Yu et al., 2009; Wang et al., 2010; 
Yang et al., 2009):

• It is able to rebuild a better descriptor by using multiple base and 
receive relationships between similar descriptors from those with 
common foundations.

• The scattering allows the representation to capture the salient 
features of the images.

• This is in line with the biological vision system, which argues that 
the scattering characteristics of signals are useful for learning.

• Studying image statistics shows that image patches are scattered 
signals.

• Patterns are more linearly separable with dispersed features.

In the following section, a number of SC algorithms in the field of 
computer vision are discussed.

SC SPATIAL PYRAMID MATCHING (SCSPM)

Sparse coding spatial pyramid matching (SCSPM) is one of the important SC 
algorithms that is an extension of the SPM algorithm (Lazebnik et al., 2006; 
Wang et al., 2010). Unlike SPM, which uses vector quantisation (VQ) for 
image representation, SCSPM uses SC with multi-scale spatial max pooling 
for this purpose. The sparse coding codebook is an over-complete basis and 
every feature is capable of activating a few of them. Compared to VQ, SC has 
a much lower reconstruction error due to the less restrictive constraint that 
considers the assignment action. Coates and Ng (2011) did more research 
on the reasons for the success of SC than vector quantisation and presented 
the results in a detailed paper (Coates & Ng, 2011). One drawback of SCSPM 
is that this method deals with local features separately and thus ignores the 
two-way dependency between them. This makes the feature variance too 
sensitive, which means that the sparse codes can change drastically, even for 
similar features.

LAPLACIAN SC METHOD (LSC) AND HYPERGRAPH LAPLACIAN SPARSE CODING 
METHOD (HLSC)

To address this problem, Gao et al. (2010) presented the Laplacian SC method 
(LSC), in which similar features are not only optimally selected for batch 
centres, but it also ensures that the centres of the selected categories are 
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the same. By adding locality constraints to SC objectives, the LSC method is 
able to maintain a two-way dependency on SC. Gao et al. (2012) developed 
the hypergraph Laplacian sparse coding method (HLSC), which developed 
the LSC. Their approach was to state the similarities among the samples by a 
hypergraph. Both the LSC and HLSC methods add SC power.

 Another approach that can be used to solve the (over) sensitivity 
problem is the hierarchical SC (HSC) method developed by Yu et al. (2011). 
This method introduces a two-layer SC model that encodes the first layer 
of each patch separately, and the second layer is a joint set of patches 
belonging to one group. By doing this, the model makes the best use of the 
neighbouring space structure by modelling high order dependency patches in 
the same local area of the image. In addition, this is a fully automated way of 
learning features from the pixel level and no longer needs to manually design 
the scale-invariant feature transform (SIFT). HSC has been used to learn the 
unsupervised features in Zeiler et al. (2010). This model was later used by 
Zeiler et al. (2011).

LOCAL COORDINATE CODING (LCC)

In addition to sensitivity, there is another method used to improve the SCSPM 
algorithm. This method tries to improve the SCSPM algorithm by considering 
the locality. Yu et al. (2009) considered how the algorithm works; SCSPM 
results tend to be localised and mean non-zero coefficients are usually 
assigned to nearby bases. These results suggest a change in the SCSPM, 
referred to as local coordinate coding (LCC). This explicitly encourages coding 
to be localised. They also theorised that locality can enhance sparsity and that 
SC is useful for learning only when codes are local, so it is best to have non-
zero dimensional data in codes. Although LCC is computationally superior to 
classical SC, it still requires time-consuming L1-norm optimisation (Yu et al., 
2009). In order to expedite the learning process, a practical coding method 
called locality constrained linear coding (LCLC) was introduced by Wang et al. 
(2010), which can be seen as a quick implementation of the LCC that replaced 
L1-norm regularisation with L2-norm regularisation. Figure 4 shows the 
comparison between VQ, SCSPM and LLC.

Figure 4. Comparison between VQ, SCSPM and LLC (Wang et al., 2010, p. 3).
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SUPER-VECTOR CODING (SVC)

In addition to LLC, there is another model, known as super-vector coding 
(SVC), which guarantees local SC (X. Zhou et al., 2010). Upon receiving X, 
the SVC activates the coordinates associated with the neighbourhood of X to 
achieve sparse representation. SVC is a simple extension of VQ obtained by 
extending the VQ of local tangent degrees and therefore it is a more uniform 
coding method (X. Zhou et al., 2010).

 An interesting result showed in Y. Lin et al. (2011) that the averaging 
stochastic gradient descent (ASGD) method is combined with the LLC and 
SVC algorithms to increase the scalability of the image clustering in the large 
dataset, and it achieved excellent results.

 There is another popular method called smooth sparse coding 
(SSC), which is presented in Balasubramanian et al. (2013). By combining 
neighbourhood similarity and temporal information in SC, it was able to obtain 
codes that represent a neighbourhood rather than an individual sample and 
have a lower average square error of reconstruction (Balasubramanian et al., 
2013).

Recently, He et al. (2014) introduced a new unsupervised feature learning 
framework called deep sparse coding (DSC), which extended SC using a 
multilayer architecture and achieved the best performance among sparse 
coding methods.

Model Selection of Deep Learning Methods
The model selection from deep learning methods (or even machine learning 
algorithms) is a challenging and critical factor in having the best results. In this 
section, the challenge of method selection for deep learning will be discussed. 

MODEL SELECTION

Model selection is the process of selecting one final deep learning model from 
among a collection of candidate deep learning models for a training dataset 
(Murphy, 2012). It is a process that can be applied both across different types 
of methods, including CNN, AE, etc., and across methods of the same type 
configured with varying hyperparameters of practice (e.g., different kernels 
in an SVM). For example, we may have a dataset for which we are interested 
in developing a classification or predictive regression model. We do not 
know which model will perform best on this problem, as it is unknowable. 
Therefore, we fit and evaluate a suite of different models on the problem. 
Method selection is the process of choosing the final method that addresses 
the problem.
 Model selection is different from model assessment. For example, 
we evaluate or assess candidate methods to choose the best one, which 
is method selection. Once a method is chosen, it can be evaluated to 
communicate how well it is expected to perform in general; this is model 
assessment (James et al., 2013).
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CONSIDERATIONS FOR MODEL SELECTION

Fitting the model is relatively straightforward, although selecting among 
them is the true challenge of applied machine learning (Murphy, 2012). All 
models have some predictive error, given the statistical noise in the data, the 
incompleteness of the data sample, and the limitations of each different model 
type. Therefore, the notion of a perfect or best model is not useful. Instead, 
we must seek a model that is “good enough” (Murphy, 2012, pp. 22-23).
 Different project stakeholders may have specific requirements, such 
as maintainability and limited model complexity. As such, a model with 
lower skill but that is more straightforward and easier to understand may be 
preferred. Alternately, method skill might be valued above all other concerns. 
In that case, the model’s ability to perform well on out-of-sample data will be 
preferred regardless of the computational complexity involved. Therefore, a 
“good enough” method may refer to many things and is specific in different 
projects, such as (Murphy, 2012, pp. 22-23):

•	 A model that meets the requirements and constraints of project 
stakeholders

•	 A model that is sufficiently skillful given the time and resources 
available

•	 A model that is skillful as compared to naive models

•	 A model that is skillful relative to other tested models

•	 A model that is skillful comparable to the state of the art

Next, what is being selected must be considered. For example, a fit 
model is not specified, as all methods will be discarded. This is because 
once a model is chosen, a new final method will be fitted on all available data 
and used to start making predictions. Some algorithms require specialised 
data preparation to best expose the structure of the problem to the learning 
algorithm. Therefore, model selection should be considered as the process 
of selecting among model development pipelines. Each pipeline may take in 
the same raw training dataset and output a model that can be evaluated in the 
same manner, but may require different or overlapping computational steps, 
such as data filtering, feature selection, etc. 

MODEL SELECTION TECHNIQUES

The best approach to model selection requires ‘sufficient’ data, which 
may be nearly infinite depending on the complexity of the problem. In this 
ideal situation, the data is split into training, validation and test sets. Then, 
it fits candidate methods on the training set, evaluates and selects them 
on the validation set, and reports the final model on the test set (Friedman 
et al., 2001). This is impractical on most predictive modelling problems, 
given that we rarely have sufficient data or can even judge what would be 
adequate (Biship, 2007). Instead, there are two main classes of techniques to 
approximate the ideal case of model selection, which are as follows:
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•	 Probabilistic Measures: Choose a model via in-sample error and 
complexity

•	 Resampling Methods: Choose a model via estimated out-of-sample 
error

Probabilistic measures involve analytically scoring a candidate model 
using both its performance on the training dataset and the complexity of 
the technique. It is known that training error is optimistically biased, and 
therefore is not a reasonable basis for choosing a model. The performance 
can be penalised based on how optimistic the training error is believed to be. 
This is typically achieved using algorithm-specific models, often linear, that 
penalise the score based on the complexity of the technique (Biship, 2007). 
Probabilistic measures are appropriate when using simpler linear models 
like linear regression or logistic regression, where the calculating of model 
complexity penalty (e.g., in sample bias) is known and tractable.
 Resampling models seek to estimate the performance of a method (or, 
more precisely, the model development process) on out-of-sample data. This 
is achieved by splitting the training dataset into sub-train and test sets, fitting a 
model on the sub-train set, and evaluating it on the test set. This process may 
then be repeated multiple times, and the mean performance across each trial 
is reported (James et al., 2013). In the next section, the ten features of deep 
learning methods are compared and discussed. 

Discussion
In order to compare these four types of deep learning methods and gain an 
understanding of them, a summary of the benefits and problems of each 
according to their various characteristics is presented in Table 4. Please note 
that in Table 4, ‘Yes’ indicates that the handle works well in this feature. 
Otherwise, it is marked with ‘No.’ ‘*Yes’ refers to elementary or weak 
ability. Table 4 has a total of ten main features. ‘Generalisation’ refers to the 
way the media (image, sound, etc.) is used and various applications such 
as speech recognition, visual recognition, etc. ‘Unsupervised learning’ also 
refers to the ability to automatically learn a deep model without supervisory 
annotations. ‘Feature learning’ is the ability to automatically learn features 
based on a dataset. ‘Real-time training’ and ‘real-time prediction’ both refer to 
the efficiency of learning and the inferential process, respectively. ‘Biological 
understanding’ and ‘theoretical justification’ indicate whether the method 
has a biological basis or a theoretical basis. ‘Invariance’ refers to whether the 
method is resistant to transformations such as rotation, scale and translation. 
‘Small training set’ also refers to learning a deep model using only a few 
examples. ‘Sparse and high-dimensional data’ refers to the ability to deal with 
sparse input data and high-dimensional data for feature extraction purposes. It 
is important to note that Table 4 presents only general overviews and does not 
provide a snapshot of future opportunities or specific examples. Table 5 shows 
the comparison of machine learning and deep neural network. 
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 Deep learning has been used extensively in various areas of computer 
vision such as image classification, object detection, semantic segmentation, 
image retrieval, human gesture estimation and feature extraction. Each of 
these algorithms can be applied for a specific purpose. For example, to 
provide a solution and overcome some of the limitations on current vein 
pattern recognition (VPR) methods (Varastehpour et al., 2020), deep learning 
algorithms are able to improve the performance of the current methods of 
VPR in the domain of interest, as indicated above, objectively, effectively and 
efficiently. 

 

Features CNN RBM AE SC

Generalisation Yes Yes Yes Yes

Unsupervised learning No Yes Yes Yes

Feature learning Yes *Yes Yes No

Real-time training No No Yes Yes

Real-time prediction Yes Yes Yes Yes

Biological understanding No No No Yes

Theoretical justification *Yes Yes Yes Yes

Invariance *Yes No No Yes

Small training set *Yes *Yes Yes No

Sparse and high-dimensional data No No *Yes No

Table 4: Comparison of ten features between CNN, RBM, AE and SC.

Table 5. Comparison of machine learning and deep neural network.

Machine learning Deep neural network

Machine learning uses algorithms to parse data, learn 
from that data, and make informed decisions based 
on what it has learned

Deep learning structures algorithms in layers to create 
an ‘artificial neural network’ that can learn and make 
intelligent decisions on its own

Can train on less training data Requires large data sets for training

Takes less time to train Takes a longer time to train

Trains on CPU Trains on GPU and CPU for proper training

The output is in numerical form for classification and 
scoring applications

The output can be in any form, including free-form 
elements such as free text and sound

Limited tuning capability for hyperparameter tuning It can be tuned in various ways
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Conclusion
Deep learning algorithms have received great attention over the last decade 
due to their high performance. They have helped in the fields of computer 
vision and image processing to improve their efficiency. The four key 
categories of deep learning for computer vision and image processing that 
have been reviewed in this literature are CNN, RBM, autoencoder, and sparse 
coding-based methods. They have been employed with different performance 
rates in a variety of features, such as generalisation, unsupervised learning, 
feature learning, biological understanding, etc. However, each category has 
distinct advantages and disadvantages. CNN and autoencoder-based methods 
have the unique capability of feature learning; that is, of automatically learning 
features based on the given dataset. Sparse coding-based methods are 
invariant to transformations, which is a great asset for certain computer vision 
applications and it is also useful in terms of biological learning, while RBM, 
autoencoder, and CNN-based methods are not. Of the models investigated, 
both CNNs and RBMs are computationally demanding when it comes to 
training, whereas autoencoder and sparse coding can be trained in real time 
under certain circumstances. However, these deep learning algorithms need 
to be investigated more in the future based on the new demand in the field 
of computer vision to which a specific architecture or algorithm is effective in 
a given task or not. These algorithms are among the most important topics 
that will continue to attract the interest of the machine learning research 
community in the years to come.
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