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Abstract 

The Queensland fruit fly (Bactrocera tryoni) 
is a significant horticultural pest in Australia, 
and has also established in other parts of the 
Pacific. There is a significant risk to New 
Zealand of invasion by this species, and 
several recent incursions have occurred.  The 
potential effects of climate change on the 
distribution and impacts of invasive species 
are well known.  This paper uses species 
distribution modelling using Maxent to predict 
the suitability of New Zealand to the 
Queensland fruit fly based on known 
occurrences worldwide and Bioclim climatic 
layers.  Under current climatic conditions the 
majority of the country was generally in the 
lower range, with some areas in the medium 
range.  Suitability prediction maps under 
future climate change conditions in 2050 and 
2070, at lower emission (RCP 2.6) and higher 
emission (RCP 8.5) scenarios generally show 
an increase in suitability in both the North and 
South Islands.  Calculations of the shift of 
suitable areas show a general movement of 
the centroid towards the south-east, with the 
higher emission scenario showing a greater 
magnitude of movement. 

Keywords: Invasive species, climate change, species distribution modelling, Maxent, RCP 2.6, RCP 8.5. 

Introduction 

The Queensland fruit fly Bactrocera tryoni (Froggatt) 
(Diptera: Tephritidae) is consistently described as the 
most damaging pest to Australia’s horticulture industries 
(Mo et al., 2012; Bateman, 1991; Dominiak, 2011) with 
an annual economic cost averaging around $25.7 million 

from 2003 to 2008 (Oliver 2007).  The impacts of the 
pest on Australia's horticulture industries are well 
documented, with outbreaks reported in commercial fruit 
farms since the late 1890s (Dominiak & Ekman 2013).   
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The Queensland fruit fly is endemic to the eastern 
states of Australia but has a well-documented history of 
spreading to other areas through the transport of fruit or 
with human assistance (Dominiak & Coombes, 2009; 
Dominiak et al; 2000).  It is now established in some 
south Pacific island nations (Drew et al; 1978) with 
detections also reported in  New Zealand, the most recent 
occurring in February of 2015, requiring an immediate 
response and the setting up of a quarantine zone within 
Auckland City (Ministry of Primary Industries, 2015). The 
source of the Queensland fruit fly is most likely to be 
Australia, New Caledonia, French Polynesia or other 
islands where it has established and subsequently been 
transported by passengers to Auckland or other ports of 
entry through fruit and other host goods. (Ministry of 
Primary Industries, 2015). The estimated impact of a 
Queensland fruit fly incursion to the kiwifruit industry of 
New Zealand alone is estimated to range from a low of $2 
million to $430 million per year (KVH, 2014). The lower 
figure is based on operational costs associated with 
incursion by a single fly . The greater cost is associated 
with the worst case scenario where a breeding population 
results in indirect impacts to horticulture involving the 
closing of markets and costs of quarantine measures 
(KVH, 2014). Such recognised economic cost, plus the 
impact on native ecosystems, requires the production of 
models that inform a risk assessment process. These are 
needed for the development of strategies and effective 
management plans. The model must include 
environmental drivers that directly impact the distribution 
of the fruit fly. Climate change is recognised as one of the 
most important factors (Hellmann et al., 2008).  

The potential effects of climate change on the 
predicted range and distribution for invasive species are 
well-recognised, with the majority of research efforts 
focusing on predicting the spatial characteristics of 
species distribution for management and conservation 
purposes (Broennimann et al., 2007;  Elith et al., 2010; 
Gallien et al., 2010; Gramvölgyi & Hufnagel, 2013;  Taylor 
et al., 2013). Modelling the suitability of an area for an 
invasive species, particularly at large spatial scales, most 
often uses climate as the major environmental variable. 
This is based on the assumption that  environmental 
conditions of known species can help identify suitable 
areas, or determine the potential of other areas, for the 
organism to successfully occupy and establish itself 
(Peterson & Vieglais, 2001; Daehler et al., 2004), 
including distributions affected by climate change 
(Beaumont et al., 2005).  

The approach used in this paper involved species 
distribution modelling (SDM) which produces maps 
depicting the potential distribution of a species. SDM 
algorithms and software use species occurrence data and 
environmental conditions existing at their geographical 
locations (Araújo & Guisan 2006; Guisan et al., 2013). 
Published scientific articles illustrate that SDM use has 
significantly increased over the last 20 years, particularly 
for species suitability at novel locations and different time 
periods, including past and future (Robinson et al., 2011; 
Guisan et al., 2013).  Examples include: the identification 
of priority areas for species invasion, establishment and 
spread (Soberon et al., 2001; Roura-Pascual et al., 2009, 
Poulus et al., 2012); habitat suitability for threatened 
and/or endangered species (Puschendorf et al., 2009, 

Wilson et al., 2011); and predicting distribution of native 
or endemic species (Evangelista et al., 2008). Other 
studies have modelled the suitability of relatively 
unexplored or little studied areas as well as under future 
and past conditions using global circulation models and 
climate scenarios (Nabout et al., 2010, Khanum et al., 
2013). More importantly, SDMs are used to inform and 
support decisions on invasive species management in 
different parts of the world. Australian authorities have 
used SDMs as part of invasive species detection, 
prevention and impact mitigation programmes, including 
risk assessment for approving the import of new plant 
species (Pheloung et al., 1999) and the classification of 
weeds of national significance (NTA 2007; 2009).  

In this work, we use Maxent (v3.3.3k) (Philipps et al., 
2006) as the modelling tool to determine and describe 
the suitability of New Zealand to the Queensland fruit fly 
under current and future climate scenarios. Maxent has 
also been tested widely and used for the modelling of a 
large number of terrestrial and marine species at 
different geographic and time scales (Fourcade et al., 
2014; Elith & Graham 2009; Reiss et al., 2011 ). The tool 
is reported to provide better or more robust performance 
compared to other approaches (Elith et al., 2006). 
Maxent was used to model invasive species (Domíguez-
Vega et al., 2012; Elith et al., 2006; De Queiroz et al., 
2013), endangered or threatened species (Shochat et al., 
2010), crops (Blanchard et al., 2015) and even species in 
ancient periods (Connolly et al., 2012).  

Methodology 

Species distribution modelling requires species 
occurrences and environmental layers to produce a 
prediction of habitat suitability over an area of study. We 
used occurrence data from the Global Biodiversity 
Information Facility (GBIF: http://www.gbif.org), reports 
of invaded and established populations and well-known 
outbreaks (Clarke et al., 2011). The entire set of available 
geographic locations of occurrences was used, based on 
the finding that the entire range of distributions is more 
useful in predicting the spread of invasive species 
compared to just using the occurrences from its native 
range (Beaumont et al., 2009). 

Environmental layers for current conditions 
consisted of the Bioclim dataset downloaded from the 
Worldclim database for current conditions (Hijmans et al., 
2005). The Bioclim dataset represents values derived 
from 1950-2000 and consists of 19 climatic variables, 11 
of which are temperature based and 8 precipitation 
related. Representing annual trends, seasonality and 
limiting environmental variables or extreme conditions, 
the Bioclim dataset has been found to be more 
informative than measures such as monthly temperature 
and precipitation averages. It has found acceptance and 
common use, particularly for species distribution 
modelling (Guisan & Thuiller, 2005; Wasowicz et al., 
2014; Wakie et al., 2014).  

To represent the future conditions consisting of 
lower and higher emission scenarios, we used available 
downscaled datasets described in the IPCC 5th report 
(CMIP5) based on Relative Concentration Pathways (RCP) 
(IPCC, 2013; Carrero et al., 2014). Two scenarios of the 
CCSM4  model (Gent et al., 2011), RCP 2.6 and RCP 8.5, 
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representing the lowest and highest emission scenarios, 
were downloaded for the years 2050 and 2070 from the 
Worldclim database. RCP 2.6 represents a mean global 
warming increase of 1.0°C with a likely range of 0.4°C to 
1.6°C from 2046 to 2065 and an increase of 1.0°C with a 
likely range of 0.3°C to 1.7°C from 2081 to 2100. Over 
the same time periods, the higher emission RCP 8.5 
projects an increase of 2.0°C with a likely range of 1.4°C 
to 2.6°C for the earlier period and an increase of 3.7°C 
with a likely range of 2.6°C to 4.8°C for the later years 
(IPCC, 2013). Using the dichotomy of a lower and upper 
emission scenario directly feeds into available options in 
the environmental risk assessment framework required 
for mitigation and adaptation strategies (Jones, 2001). 

To minimise multicollinearity within the variable set, 
highly correlated Bioclim variables were identified using 
the SDMToolbox in ArcMap (Dorman et al., 2013; Brown, 
2014) to check if the cross-correlation is within 
acceptable values (Pearson correlation coefficient values 
less than -0.8 or greater than 0.8). The initial run with the 
modelling software Maxent identified variables with low 
percent contribution and these were further excluded 
from the final model run. When the final Maxent model 
was run, the top five Bioclim variables in terms of percent 
contribution to the model were used (Table 1). 

Variable Description 
Percent 

contribution 

bio18nz Precipitation of the 
warmest quarter 

35.7 

bio1nz Annual mean 
temperature 

25.9 

bio7nz Temperature annual 
range 

21.6 

bio19nz Precipitation of the 
coldest quarter 

9.6 

bio14nz Precipitation of the 
driest month 

7.2 

Maxent (ver 3.3.3k), the modelling tool used, is 
based on a machine learning algorithm called maximum 
entropy. Maxent attempts to find the probability 
distribution that is the most spread out or close to 
uniform, based on constraints dictated by the information 
available. This information is based on two sources: the 
observed occurrence records; and environmental 
conditions of the area of concern (Evangelista et al., 
2008; Phillips & Dudick, 2008). Maxent is also classified 
as a correlative model that uses presence and 
background points to assess the available environment 
for model calibration and testing (Elith et al., 2011). 
While other modelling tools require presence and absence 
data, Maxent only requires presence data, making it more 
convenient for the large majority of species where only 
occurrence data is available, a characteristic of most 

datasets sourced from museums or online databases 
(Guisan et al., 2013).  

To develop the model, Maxent was run with global 
environmental data at 2.5 arc minutes resolution. The 
model was projected to the entire New Zealand land mass 
for current and future scenarios with higher resolution 30 
arc-second (0.00833 degrees or approximately 1 
kilometre) rasters. This is similar to the work of Berry et 
al., (2002) where a European model was projected onto 
Britain and Ireland for modelling the distribution of 54 
species. Developing the local model from a larger extent 
has the advantage of the calibration data containing the 
range of environmental variables of the smaller area, 
making unnecessary the need to extrapolate values 
outside the range of the calibration (Pearson, 2007).  

To compare differences in the predicted presence or 
predicted absence between current and future conditions, 
each output map was reclassified to binary maps with the 
threshold set at the 10th percentile of the calculated 
probability values. Values less than the threshold are set 
to 0, representing absences and values greater than the 
threshold are set to 1 to represent presence. To compare 
between different years and between scenarios, each pair 
of rasters was added with the second raster multiplied by 
2 to provide 4 different possible values (0,1,2,3). For 
example, if a raster for RCP2.6 for year 2050 is added to 
the current period, the resulting raster with a value of 0 
represents absence in both years, 1 represents a range 
contraction (present only in current years), 2 represents a 
range expansion (absent in current and present in future 
year) and 3 represents presence in both years. Similar to 
the output of the tool SDMToolbox developed by Brown 
(2014), this calculation provides an overall area 
measurement of the presence or absence in the scenarios 
compared and more importantly, shows the total area 
where the probability of occurrence corresponding to 
species range has increased or expanded and decreased 
or contracted. 

Using the SDMToolbox (Brown, 2014) allowed the 
creation of centroid shift lines that describe the overall 
shift and direction of the change of the expected range 
representing presence of the species between two time 
periods. For each climate scenario, two centroid shifts 
were created, one between current conditions and 2050 
and another representing the shift between 2050 and 
2070. The direction and magnitude of the shift represents 
overall change for the entire area modelled and should be 
used with caution when local or subregion change is 
considered. However, for national or regional strategy 
formulation, the directionality information may prove 
valuable in setting risk mitigation strategies related to 
impacts of climate change on a national scale (Huntley et 
al., 2008; VanDerWal et al., 2013). 

The final Maxent model was run with 2500 iterations, 
with cross validation and 10 replicate runs, to generate 
more robust results consisting of the average of the 
output rasters. To evaluate model performance, the AUC 
(Area Under the Curve of the ROC (Receiving  Operator 
Characteristics)) is calculated and used as a measure of 
performance (Swets, 1988). The AUC provides an 
indication of the model's capability to distinguish 
between presence and absence (or pseudo-absence which 
is automatically created by Maxent). AUC values range 
from 0.5 to 1 where AUC values greater than 0.9 are 

Table 1. 
Variables that were not correlated (Pearson coefficient <= 
0.8). 
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deemed to reflect high or good performance, while AUC 
values nearing 0.5 are no better than random (Peterson 
et al., 2011).  The percentage contribution of each 
variable to the resulting probability maps is also 
produced, providing information on the importance of 
each to the model output.  

Results 

Results of the global model showed the greatest 
suitability for the Queensland fruit fly in its native and 
invaded range, including the east coast of Australia and 
some south Pacific islands. However, the model also 
shows areas in Taiwan, Vietnam, southern central China, 
South America, east of Madagascar and the south-east of 
the United States and adjacent Caribbean islands to have 
a similar high suitability (Figure 1). Mean probability for 
the raster output was 0.028 with a standard deviation of 
0.092 with a maximum probability of 0.948.  

When projected into New Zealand current conditions 
and using the range of intensity values consistent with the 
global model, the majority of the country's potential 
suitability is in the lower range of values with some areas 
in the medium range. The southern east coast of the 
North Island is found to have a medium range of 
suitability for the fruit fly (Figure 2A). This has 
implications for the wine and other horticulture industries, 
such as pip fruit (Clothier et al. 2013) in those areas. 
Some similarities to Australia can be found, including the 
most suitable areas being found on the eastern coast, 
with the central and western areas much less suitable or 
even unsuitable. The degree of suitability of the North 
Island is within the medium to low suitability range, 
except for the central mid areas and higher elevations 
which show the least suitability.  

Figure 1. 
Global suitability map for the Queensland fruit fly (A) with suitable areas in South America, Mexico and Florida (B), China, Taiwan and 
Vietnam (C) and in its native range in Australia (D). 
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Future climate scenario prediction results show 
different scenarios depending on the emission rate and 
the year projected. For the lower emission RCP 2.6 for 
the year 2050, there is an increase in suitability in both 
the North and South Islands, which changes in 2070 with 
the northern part of the South Island showing more 
suitable areas (Figure 2B and 2C) and the highest 
suitable areas of the southern central North Island 
increasing in suitability. For the higher emission scenario 
RCP 8.5, in year 2050 the mid north and east of the 
North Island shows higher suitability, with continued 
increase in suitability in 2070. The higher elevation areas 
such as Taranaki, the mountain ranges from the East 
Cape to Cook Strait that form a barrier between the 
eastern and western sides of the North Island and the 
high mountainous areas of the South Island show much 
less suitability compared to the other areas. 

The lower emission scenario generally shows lesser 
suitability compared to the higher emission scenario. 
While there is not much difference in terms of consistent 
areas of comparatively higher suitability, differences 
between intensity values are obvious, with the latter year 
(2070) generally showing a higher probability of 
predicted presence. 

Year 
Average Maximum 

Probability 

Current 0.441 

RCP 2.6 2050 0.541 

2070 0.532 

RCP 8.5 2050 0.580 

2070 0.662 

The highest probability value of the species 
occupying an individual raster or pixel is found in the RCP 
8.5 year 2070 scenario, while the lowest predicted value 
is found in the current period (Table 2).  The higher 
emission scenario, RCP 8.5, consistently shows higher 
maximum values for species occurrence probability, 
compared to the current period and both future years of 
the lower emission RCP 2.6. 

The average of the thresholded rasters produced by 
Maxent, using the 10th percentile criteria per scenario, 

Figure 2. 
Suitability prediction maps for the Queensland fruit fly under Current Conditions [A], future climate change scenarios: RCP 2.6 for years 
2050 [B], 2070 [C]; RCP 8.5 for years 2050 [D] and 2070 [E]. 

Table 2. 
Maximum probability values for suitability returned by 
Maxent per scenario/year. 
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shows increasing areas of presence for the Queensland 
fruit fly under current conditions (Figure 3A), compared 
to both low and high emission scenarios (Figures 3B-3E). 
In terms of magnitude, the higher emission RCP 8.5 
scenario shows greater presence areas for both the North 
and South Islands. Consistent absence is shown in the 
mountain ranges of the North Island, most prominently in 
an area which stretches from the East Cape to the Cook 
Strait. A band from the Taranaki region across to East 
Cape also shows a consistent absence. For the South 
Island, from very minimal presence in current conditions, 
future climate warming increases the presence areas in 
the Canterbury plains and the top of the South Island for 
the lower emission scenario. The higher emission 

scenario shows a much wider spread along the east coast. 
For the RCP 8.5 scenario in 2070, presence is predicted 
in the southernmost region of the South Island. 

In current conditions, rasters representing presence 
accounted for 5.90% of the total, increasing to 19.59% 
and 20.35% for RCP 2.6 for the years 2050 and 2070. 
The higher emission scenario, RCP8.5, shows a greater 
increase, with 28.93% and 38.98% for 2050 and 2070 
respectively. Consistent with warming conditions, the 
increased predicted presence is directly proportional to 
the level of emissions used in the projection. For the low 
emission scenario, the change between years 2050 and 
2070 is not as distinct when compared to the higher 
emission scenario RCP 8.5.  

Figure 3.  
Thresholded binary maps depicting presence and absence in current conditions [A], RCP2.6 2050 [B] and 2070 [C], RCP 8.5 2050 [D] 
and 2070 [E]. 

Figure 4. 
Breakdown in area composition of species range between projected New Zealand current and future climate change 
scenarios. 
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Results of calculating the range based on 
thresholded values show that for the lower emission 
scenario RCP 2.6, the range expansion or increase in the 
area favourable for the fruit fly between 2050 and 2070 is 
evident without any contraction in the range (Figure 4). 
The only contraction in range is a small difference from 
2050 to 2070 for RCP 2.6. A smaller increase of the 
range expansion between 2050 and 2070, compared to 
current conditions and 2050, is also shown.   

The higher emission scenario RCP 8.5 on the other 
hand, shows a higher increase in presence areas 
compared to RCP 2.6 between the current period and 
2050 as well as from 2050 to 2070. Both emission 
scenarios show a decrease in areas from which the 
species is predicted to be absent (from 93.5% in current 
conditions to 82% for RCP 2.6 and 71% for RCP 8.5 for 
the year 2070). 

When centroids of the different range areas were 
calculated, the location of the centroid in the North Island 
shifted quite similarly (towards the south-west) between 
current conditions in both the lower and higher emission 
scenarios in the year 2050. However, the lower emission 
scenario centroid shifted very slightly to the north from 
2050 to 2070, while the higher emission centroid 
continued its shift towards the south-west with a more 
southerly direction than the preceding period (Figure 5). 
In terms of magnitude of the shift, the RCP 8.5 scenario 
shows a greater shift for both period pairs compared to 
the lower emission scenario. Figure 5 also shows the 
predicted range contraction or expansion as well as 
presence and absence areas for both scenarios between 
years 2050 and 2070.  

Model evaluation results showed the AUC with a 
mean of 0.960 with a standard deviation of 0.042, 

Figure 5. 
Centroid shift between current conditions and RCP 2.6 overlaid on top of the range change 
between current period and 2070 [A] and RCP 8.5 overlaid on top of range change between 
current period and 2070 [B].  
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indicating an acceptable performance of the model 
(greater than 0.90). 

Discussion 

This study presents a demonstration of species 
distribution modelling using Maxent to predict the 
suitability of New Zealand to an invasive species in 
current and future climate change scenarios. The 
worldwide model generated from known occurrences 
(including outbreak locations) and Bioclim climatic layers, 
as environmental layers of the correlative model, not only 
predicts the suitability of countries around the world but 
also indicates sources of possible invasion, based on 
countries with predicted high suitability.  

Available transportation systems and infrastructure 
facilitating the movement of fruit and other products 
between these areas provide a major cause for concern 
for the invasion and subsequent establishment of viable 
populations in invaded areas. The current border pest 
management system is being continuously challenged by 
the sheer volume of people travelling, with 3.3 million 
visitors from Australia and New Caledonia resulting in 
5,000 instances of fruit intercepted in 2013 alone (KVH, 
2014). 

As potential sources of invasion, information on 
highly suitable countries needs to be included in the 
required risk analysis as potential sources of invasion 
(Hulme 2009; Perrings et al., 2005; Andersen et al., 
2004). Related information that can further refine the risk 
assessment in terms of invasion sources would be the 
volume of trade in items with which the species can be 
transported (mainly fruit), data on passengers with food 
items, trade partnership agreements, and biosecurity 
infrastructure at points of origin. With Auckland currently 
the area receiving the highest amount of imported volume 
and greatest number of inbound passengers, the recent 
outbreak of the Queensland fruit fly in one of its suburbs, 
as well as previous outbreaks in nearby areas, may 
provide clues on this pathway aspect of invasion. 

The maps of potential distribution of the Queensland 
fruit fly in New Zealand, in current and future climate 
scenarios, consistently identified the majority of the 
country's terrestrial area as having a low predicted 
suitability in current conditions. However, a warming 
climate, represented by both low and high emission 
scenarios, generally increases the predicted presence 
areas, a finding that is of concern as a substantial part of 
the country, including the majority of the North Island 
and the east coast of the South Island, becomes 
eventually suitable for the species. Although overall 
invasion and establishment is influenced by microclimate 
variability, local species interactions and dispersal 
mechanisms (Sinclair et al., 2010), the maps of range 
expansion serve as a preliminary set of information 
underpinning both likelihood and consequence factors of 
a national scale risk assessment process. For local 
councils and government agencies in the areas of varying 
risk, the risk assessment results may contribute to the 
prioritisation of resources and formulation of strategies. 
Input from the horticulture industry on any predicted 
responses to climate change would also be useful.  It is 
suggested that there would be a reduction in production 
of apples, kiwifruit and grapes in some areas, as the local 

climate becomes less favourable to growing those species, 
and expansion into new regions  (Clothier et al. 2013). 

The results of range calculation, where there is a 
range contraction in the RCP 2.6 scenario, is consistent 
with its inherent characteristics, i.e. an increase in 
emissions until the mid-century is expected to be 
followed by a decrease consistent with the lag of the 
effect of worldwide mitigation efforts to reduce emissions 
globally (Carraro et al., 2014). This trend is further 
supported in Table 2 where there is an increase from the 
current maximum probability to year 2050 but a 
decrease from 2050 to 2070 for RCP 2.6. The higher 
emission scenario consistently shows results with a 
greater range of suitability values and a greater increase 
of the geographical range compared to the lower 
emission scenario between the years 2050 and 2070.  

The shift in the centroid is consistent with most 
climate change studies showing a poleward drift of range 
centroids for most species in climate change conditions 
(Berry et al., 2010; Gramvölgyi & Hufnagel 2013; Tingley 
et al., 2014). For the Queensland fruit fly, this result is 
consistent with its ecophysiology as discussed by Clarke 
et al. (2011). A further refinement in this aspect is the 
addition of environmental variables such as elevation, 
land cover or vegetation, soil moisture and other 
physiologically important conditions that may improve 
the prediction (Clarke et al., 2011). Socio-economic 
variables such as population density, transportation 
networks and the surveillance system in place may also 
prove to be valuable additions to the model.   

In light of recent outbreaks of the Queensland fruit 
fly in Auckland, the generation of predictive maps is 
considered a preliminary effort providing options to 
inform the risk assessment process required to address 
present and future outbreaks. While further refinement 
and investigations are required to assess, validate and 
enhance model outputs, the process in developing the 
predictive outputs can be applied to different invasive 
species in a wide range of spatial and times scales. 

Conclusions 

Predictive models depicting the spread and distribution 
in New Zealand of the invasive and damaging Queensland 
fruit fly produced suitability maps for current and future 
climate conditions. Results show that current climatic 
conditions are in the lower probability range of suitability. 
However, a warming climate results in an increase in 
suitability that corresponds proportionally with the 
emission scenario: the higher the emission scenario, the 
greater is the area suitable for the species. Calculations 
of the shift of suitable areas show a general movement of 
the centroid towards the south-east, with the higher 
emission scenario depicting a greater magnitude of 
movement. The suitability maps produced may be 
considered a preliminary step in providing options for risk 
assessment processes required in dealing with the 
current and future outbreak or invasion potential of the 
Queensland fruit fly. 

Click here to visit the Queensland 
fruit fly suitability prediction map 

http://arcg.is/1zSTASH
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